1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- import os
- import sys
- import torch
- from ._internally_replaced_utils import _get_extension_path
- _HAS_OPS = False
- def _has_ops():
- return False
- try:
- # On Windows Python-3.8.x has `os.add_dll_directory` call,
- # which is called to configure dll search path.
- # To find cuda related dlls we need to make sure the
- # conda environment/bin path is configured Please take a look:
- # https://stackoverflow.com/questions/59330863/cant-import-dll-module-in-python
- # Please note: if some path can't be added using add_dll_directory we simply ignore this path
- if os.name == "nt" and sys.version_info < (3, 9):
- env_path = os.environ["PATH"]
- path_arr = env_path.split(";")
- for path in path_arr:
- if os.path.exists(path):
- try:
- os.add_dll_directory(path) # type: ignore[attr-defined]
- except Exception:
- pass
- lib_path = _get_extension_path("_C")
- torch.ops.load_library(lib_path)
- _HAS_OPS = True
- def _has_ops(): # noqa: F811
- return True
- except (ImportError, OSError):
- pass
- def _assert_has_ops():
- if not _has_ops():
- raise RuntimeError(
- "Couldn't load custom C++ ops. This can happen if your PyTorch and "
- "torchvision versions are incompatible, or if you had errors while compiling "
- "torchvision from source. For further information on the compatible versions, check "
- "https://github.com/pytorch/vision#installation for the compatibility matrix. "
- "Please check your PyTorch version with torch.__version__ and your torchvision "
- "version with torchvision.__version__ and verify if they are compatible, and if not "
- "please reinstall torchvision so that it matches your PyTorch install."
- )
- def _check_cuda_version():
- """
- Make sure that CUDA versions match between the pytorch install and torchvision install
- """
- if not _HAS_OPS:
- return -1
- from torch.version import cuda as torch_version_cuda
- _version = torch.ops.torchvision._cuda_version()
- if _version != -1 and torch_version_cuda is not None:
- tv_version = str(_version)
- if int(tv_version) < 10000:
- tv_major = int(tv_version[0])
- tv_minor = int(tv_version[2])
- else:
- tv_major = int(tv_version[0:2])
- tv_minor = int(tv_version[3])
- t_version = torch_version_cuda.split(".")
- t_major = int(t_version[0])
- t_minor = int(t_version[1])
- if t_major != tv_major:
- raise RuntimeError(
- "Detected that PyTorch and torchvision were compiled with different CUDA major versions. "
- f"PyTorch has CUDA Version={t_major}.{t_minor} and torchvision has "
- f"CUDA Version={tv_major}.{tv_minor}. "
- "Please reinstall the torchvision that matches your PyTorch install."
- )
- return _version
- def _load_library(lib_name):
- lib_path = _get_extension_path(lib_name)
- torch.ops.load_library(lib_path)
- _check_cuda_version()
|