video_utils.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. import bisect
  2. import math
  3. import warnings
  4. from fractions import Fraction
  5. from typing import Any, Callable, cast, Dict, List, Optional, Tuple, TypeVar, Union
  6. import torch
  7. from torchvision.io import _probe_video_from_file, _read_video_from_file, read_video, read_video_timestamps
  8. from .utils import tqdm
  9. T = TypeVar("T")
  10. def pts_convert(pts: int, timebase_from: Fraction, timebase_to: Fraction, round_func: Callable = math.floor) -> int:
  11. """convert pts between different time bases
  12. Args:
  13. pts: presentation timestamp, float
  14. timebase_from: original timebase. Fraction
  15. timebase_to: new timebase. Fraction
  16. round_func: rounding function.
  17. """
  18. new_pts = Fraction(pts, 1) * timebase_from / timebase_to
  19. return round_func(new_pts)
  20. def unfold(tensor: torch.Tensor, size: int, step: int, dilation: int = 1) -> torch.Tensor:
  21. """
  22. similar to tensor.unfold, but with the dilation
  23. and specialized for 1d tensors
  24. Returns all consecutive windows of `size` elements, with
  25. `step` between windows. The distance between each element
  26. in a window is given by `dilation`.
  27. """
  28. if tensor.dim() != 1:
  29. raise ValueError(f"tensor should have 1 dimension instead of {tensor.dim()}")
  30. o_stride = tensor.stride(0)
  31. numel = tensor.numel()
  32. new_stride = (step * o_stride, dilation * o_stride)
  33. new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
  34. if new_size[0] < 1:
  35. new_size = (0, size)
  36. return torch.as_strided(tensor, new_size, new_stride)
  37. class _VideoTimestampsDataset:
  38. """
  39. Dataset used to parallelize the reading of the timestamps
  40. of a list of videos, given their paths in the filesystem.
  41. Used in VideoClips and defined at top level, so it can be
  42. pickled when forking.
  43. """
  44. def __init__(self, video_paths: List[str]) -> None:
  45. self.video_paths = video_paths
  46. def __len__(self) -> int:
  47. return len(self.video_paths)
  48. def __getitem__(self, idx: int) -> Tuple[List[int], Optional[float]]:
  49. return read_video_timestamps(self.video_paths[idx])
  50. def _collate_fn(x: T) -> T:
  51. """
  52. Dummy collate function to be used with _VideoTimestampsDataset
  53. """
  54. return x
  55. class VideoClips:
  56. """
  57. Given a list of video files, computes all consecutive subvideos of size
  58. `clip_length_in_frames`, where the distance between each subvideo in the
  59. same video is defined by `frames_between_clips`.
  60. If `frame_rate` is specified, it will also resample all the videos to have
  61. the same frame rate, and the clips will refer to this frame rate.
  62. Creating this instance the first time is time-consuming, as it needs to
  63. decode all the videos in `video_paths`. It is recommended that you
  64. cache the results after instantiation of the class.
  65. Recreating the clips for different clip lengths is fast, and can be done
  66. with the `compute_clips` method.
  67. Args:
  68. video_paths (List[str]): paths to the video files
  69. clip_length_in_frames (int): size of a clip in number of frames
  70. frames_between_clips (int): step (in frames) between each clip
  71. frame_rate (int, optional): if specified, it will resample the video
  72. so that it has `frame_rate`, and then the clips will be defined
  73. on the resampled video
  74. num_workers (int): how many subprocesses to use for data loading.
  75. 0 means that the data will be loaded in the main process. (default: 0)
  76. output_format (str): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
  77. """
  78. def __init__(
  79. self,
  80. video_paths: List[str],
  81. clip_length_in_frames: int = 16,
  82. frames_between_clips: int = 1,
  83. frame_rate: Optional[int] = None,
  84. _precomputed_metadata: Optional[Dict[str, Any]] = None,
  85. num_workers: int = 0,
  86. _video_width: int = 0,
  87. _video_height: int = 0,
  88. _video_min_dimension: int = 0,
  89. _video_max_dimension: int = 0,
  90. _audio_samples: int = 0,
  91. _audio_channels: int = 0,
  92. output_format: str = "THWC",
  93. ) -> None:
  94. self.video_paths = video_paths
  95. self.num_workers = num_workers
  96. # these options are not valid for pyav backend
  97. self._video_width = _video_width
  98. self._video_height = _video_height
  99. self._video_min_dimension = _video_min_dimension
  100. self._video_max_dimension = _video_max_dimension
  101. self._audio_samples = _audio_samples
  102. self._audio_channels = _audio_channels
  103. self.output_format = output_format.upper()
  104. if self.output_format not in ("THWC", "TCHW"):
  105. raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")
  106. if _precomputed_metadata is None:
  107. self._compute_frame_pts()
  108. else:
  109. self._init_from_metadata(_precomputed_metadata)
  110. self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)
  111. def _compute_frame_pts(self) -> None:
  112. self.video_pts = []
  113. self.video_fps = []
  114. # strategy: use a DataLoader to parallelize read_video_timestamps
  115. # so need to create a dummy dataset first
  116. import torch.utils.data
  117. dl: torch.utils.data.DataLoader = torch.utils.data.DataLoader(
  118. _VideoTimestampsDataset(self.video_paths), # type: ignore[arg-type]
  119. batch_size=16,
  120. num_workers=self.num_workers,
  121. collate_fn=_collate_fn,
  122. )
  123. with tqdm(total=len(dl)) as pbar:
  124. for batch in dl:
  125. pbar.update(1)
  126. clips, fps = list(zip(*batch))
  127. # we need to specify dtype=torch.long because for empty list,
  128. # torch.as_tensor will use torch.float as default dtype. This
  129. # happens when decoding fails and no pts is returned in the list.
  130. clips = [torch.as_tensor(c, dtype=torch.long) for c in clips]
  131. self.video_pts.extend(clips)
  132. self.video_fps.extend(fps)
  133. def _init_from_metadata(self, metadata: Dict[str, Any]) -> None:
  134. self.video_paths = metadata["video_paths"]
  135. assert len(self.video_paths) == len(metadata["video_pts"])
  136. self.video_pts = metadata["video_pts"]
  137. assert len(self.video_paths) == len(metadata["video_fps"])
  138. self.video_fps = metadata["video_fps"]
  139. @property
  140. def metadata(self) -> Dict[str, Any]:
  141. _metadata = {
  142. "video_paths": self.video_paths,
  143. "video_pts": self.video_pts,
  144. "video_fps": self.video_fps,
  145. }
  146. return _metadata
  147. def subset(self, indices: List[int]) -> "VideoClips":
  148. video_paths = [self.video_paths[i] for i in indices]
  149. video_pts = [self.video_pts[i] for i in indices]
  150. video_fps = [self.video_fps[i] for i in indices]
  151. metadata = {
  152. "video_paths": video_paths,
  153. "video_pts": video_pts,
  154. "video_fps": video_fps,
  155. }
  156. return type(self)(
  157. video_paths,
  158. clip_length_in_frames=self.num_frames,
  159. frames_between_clips=self.step,
  160. frame_rate=self.frame_rate,
  161. _precomputed_metadata=metadata,
  162. num_workers=self.num_workers,
  163. _video_width=self._video_width,
  164. _video_height=self._video_height,
  165. _video_min_dimension=self._video_min_dimension,
  166. _video_max_dimension=self._video_max_dimension,
  167. _audio_samples=self._audio_samples,
  168. _audio_channels=self._audio_channels,
  169. output_format=self.output_format,
  170. )
  171. @staticmethod
  172. def compute_clips_for_video(
  173. video_pts: torch.Tensor, num_frames: int, step: int, fps: int, frame_rate: Optional[int] = None
  174. ) -> Tuple[torch.Tensor, Union[List[slice], torch.Tensor]]:
  175. if fps is None:
  176. # if for some reason the video doesn't have fps (because doesn't have a video stream)
  177. # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
  178. fps = 1
  179. if frame_rate is None:
  180. frame_rate = fps
  181. total_frames = len(video_pts) * (float(frame_rate) / fps)
  182. _idxs = VideoClips._resample_video_idx(int(math.floor(total_frames)), fps, frame_rate)
  183. video_pts = video_pts[_idxs]
  184. clips = unfold(video_pts, num_frames, step)
  185. if not clips.numel():
  186. warnings.warn(
  187. "There aren't enough frames in the current video to get a clip for the given clip length and "
  188. "frames between clips. The video (and potentially others) will be skipped."
  189. )
  190. idxs: Union[List[slice], torch.Tensor]
  191. if isinstance(_idxs, slice):
  192. idxs = [_idxs] * len(clips)
  193. else:
  194. idxs = unfold(_idxs, num_frames, step)
  195. return clips, idxs
  196. def compute_clips(self, num_frames: int, step: int, frame_rate: Optional[int] = None) -> None:
  197. """
  198. Compute all consecutive sequences of clips from video_pts.
  199. Always returns clips of size `num_frames`, meaning that the
  200. last few frames in a video can potentially be dropped.
  201. Args:
  202. num_frames (int): number of frames for the clip
  203. step (int): distance between two clips
  204. frame_rate (int, optional): The frame rate
  205. """
  206. self.num_frames = num_frames
  207. self.step = step
  208. self.frame_rate = frame_rate
  209. self.clips = []
  210. self.resampling_idxs = []
  211. for video_pts, fps in zip(self.video_pts, self.video_fps):
  212. clips, idxs = self.compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate)
  213. self.clips.append(clips)
  214. self.resampling_idxs.append(idxs)
  215. clip_lengths = torch.as_tensor([len(v) for v in self.clips])
  216. self.cumulative_sizes = clip_lengths.cumsum(0).tolist()
  217. def __len__(self) -> int:
  218. return self.num_clips()
  219. def num_videos(self) -> int:
  220. return len(self.video_paths)
  221. def num_clips(self) -> int:
  222. """
  223. Number of subclips that are available in the video list.
  224. """
  225. return self.cumulative_sizes[-1]
  226. def get_clip_location(self, idx: int) -> Tuple[int, int]:
  227. """
  228. Converts a flattened representation of the indices into a video_idx, clip_idx
  229. representation.
  230. """
  231. video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
  232. if video_idx == 0:
  233. clip_idx = idx
  234. else:
  235. clip_idx = idx - self.cumulative_sizes[video_idx - 1]
  236. return video_idx, clip_idx
  237. @staticmethod
  238. def _resample_video_idx(num_frames: int, original_fps: int, new_fps: int) -> Union[slice, torch.Tensor]:
  239. step = float(original_fps) / new_fps
  240. if step.is_integer():
  241. # optimization: if step is integer, don't need to perform
  242. # advanced indexing
  243. step = int(step)
  244. return slice(None, None, step)
  245. idxs = torch.arange(num_frames, dtype=torch.float32) * step
  246. idxs = idxs.floor().to(torch.int64)
  247. return idxs
  248. def get_clip(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any], int]:
  249. """
  250. Gets a subclip from a list of videos.
  251. Args:
  252. idx (int): index of the subclip. Must be between 0 and num_clips().
  253. Returns:
  254. video (Tensor)
  255. audio (Tensor)
  256. info (Dict)
  257. video_idx (int): index of the video in `video_paths`
  258. """
  259. if idx >= self.num_clips():
  260. raise IndexError(f"Index {idx} out of range ({self.num_clips()} number of clips)")
  261. video_idx, clip_idx = self.get_clip_location(idx)
  262. video_path = self.video_paths[video_idx]
  263. clip_pts = self.clips[video_idx][clip_idx]
  264. from torchvision import get_video_backend
  265. backend = get_video_backend()
  266. if backend == "pyav":
  267. # check for invalid options
  268. if self._video_width != 0:
  269. raise ValueError("pyav backend doesn't support _video_width != 0")
  270. if self._video_height != 0:
  271. raise ValueError("pyav backend doesn't support _video_height != 0")
  272. if self._video_min_dimension != 0:
  273. raise ValueError("pyav backend doesn't support _video_min_dimension != 0")
  274. if self._video_max_dimension != 0:
  275. raise ValueError("pyav backend doesn't support _video_max_dimension != 0")
  276. if self._audio_samples != 0:
  277. raise ValueError("pyav backend doesn't support _audio_samples != 0")
  278. if backend == "pyav":
  279. start_pts = clip_pts[0].item()
  280. end_pts = clip_pts[-1].item()
  281. video, audio, info = read_video(video_path, start_pts, end_pts)
  282. else:
  283. _info = _probe_video_from_file(video_path)
  284. video_fps = _info.video_fps
  285. audio_fps = None
  286. video_start_pts = cast(int, clip_pts[0].item())
  287. video_end_pts = cast(int, clip_pts[-1].item())
  288. audio_start_pts, audio_end_pts = 0, -1
  289. audio_timebase = Fraction(0, 1)
  290. video_timebase = Fraction(_info.video_timebase.numerator, _info.video_timebase.denominator)
  291. if _info.has_audio:
  292. audio_timebase = Fraction(_info.audio_timebase.numerator, _info.audio_timebase.denominator)
  293. audio_start_pts = pts_convert(video_start_pts, video_timebase, audio_timebase, math.floor)
  294. audio_end_pts = pts_convert(video_end_pts, video_timebase, audio_timebase, math.ceil)
  295. audio_fps = _info.audio_sample_rate
  296. video, audio, _ = _read_video_from_file(
  297. video_path,
  298. video_width=self._video_width,
  299. video_height=self._video_height,
  300. video_min_dimension=self._video_min_dimension,
  301. video_max_dimension=self._video_max_dimension,
  302. video_pts_range=(video_start_pts, video_end_pts),
  303. video_timebase=video_timebase,
  304. audio_samples=self._audio_samples,
  305. audio_channels=self._audio_channels,
  306. audio_pts_range=(audio_start_pts, audio_end_pts),
  307. audio_timebase=audio_timebase,
  308. )
  309. info = {"video_fps": video_fps}
  310. if audio_fps is not None:
  311. info["audio_fps"] = audio_fps
  312. if self.frame_rate is not None:
  313. resampling_idx = self.resampling_idxs[video_idx][clip_idx]
  314. if isinstance(resampling_idx, torch.Tensor):
  315. resampling_idx = resampling_idx - resampling_idx[0]
  316. video = video[resampling_idx]
  317. info["video_fps"] = self.frame_rate
  318. assert len(video) == self.num_frames, f"{video.shape} x {self.num_frames}"
  319. if self.output_format == "TCHW":
  320. # [T,H,W,C] --> [T,C,H,W]
  321. video = video.permute(0, 3, 1, 2)
  322. return video, audio, info, video_idx
  323. def __getstate__(self) -> Dict[str, Any]:
  324. video_pts_sizes = [len(v) for v in self.video_pts]
  325. # To be back-compatible, we convert data to dtype torch.long as needed
  326. # because for empty list, in legacy implementation, torch.as_tensor will
  327. # use torch.float as default dtype. This happens when decoding fails and
  328. # no pts is returned in the list.
  329. video_pts = [x.to(torch.int64) for x in self.video_pts]
  330. # video_pts can be an empty list if no frames have been decoded
  331. if video_pts:
  332. video_pts = torch.cat(video_pts) # type: ignore[assignment]
  333. # avoid bug in https://github.com/pytorch/pytorch/issues/32351
  334. # TODO: Revert it once the bug is fixed.
  335. video_pts = video_pts.numpy() # type: ignore[attr-defined]
  336. # make a copy of the fields of self
  337. d = self.__dict__.copy()
  338. d["video_pts_sizes"] = video_pts_sizes
  339. d["video_pts"] = video_pts
  340. # delete the following attributes to reduce the size of dictionary. They
  341. # will be re-computed in "__setstate__()"
  342. del d["clips"]
  343. del d["resampling_idxs"]
  344. del d["cumulative_sizes"]
  345. # for backwards-compatibility
  346. d["_version"] = 2
  347. return d
  348. def __setstate__(self, d: Dict[str, Any]) -> None:
  349. # for backwards-compatibility
  350. if "_version" not in d:
  351. self.__dict__ = d
  352. return
  353. video_pts = torch.as_tensor(d["video_pts"], dtype=torch.int64)
  354. video_pts = torch.split(video_pts, d["video_pts_sizes"], dim=0)
  355. # don't need this info anymore
  356. del d["video_pts_sizes"]
  357. d["video_pts"] = video_pts
  358. self.__dict__ = d
  359. # recompute attributes "clips", "resampling_idxs" and other derivative ones
  360. self.compute_clips(self.num_frames, self.step, self.frame_rate)