123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- import os
- from typing import Any, Callable, Dict, List, Optional, Tuple
- from torch import Tensor
- from .folder import find_classes, make_dataset
- from .video_utils import VideoClips
- from .vision import VisionDataset
- class UCF101(VisionDataset):
- """
- `UCF101 <https://www.crcv.ucf.edu/data/UCF101.php>`_ dataset.
- UCF101 is an action recognition video dataset.
- This dataset consider every video as a collection of video clips of fixed size, specified
- by ``frames_per_clip``, where the step in frames between each clip is given by
- ``step_between_clips``. The dataset itself can be downloaded from the dataset website;
- annotations that ``annotation_path`` should be pointing to can be downloaded from `here
- <https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip>`_.
- To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
- and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
- elements will come from video 1, and the next three elements from video 2.
- Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
- frames in a video might be present.
- Internally, it uses a VideoClips object to handle clip creation.
- Args:
- root (string): Root directory of the UCF101 Dataset.
- annotation_path (str): path to the folder containing the split files;
- see docstring above for download instructions of these files
- frames_per_clip (int): number of frames in a clip.
- step_between_clips (int, optional): number of frames between each clip.
- fold (int, optional): which fold to use. Should be between 1 and 3.
- train (bool, optional): if ``True``, creates a dataset from the train split,
- otherwise from the ``test`` split.
- transform (callable, optional): A function/transform that takes in a TxHxWxC video
- and returns a transformed version.
- output_format (str, optional): The format of the output video tensors (before transforms).
- Can be either "THWC" (default) or "TCHW".
- Returns:
- tuple: A 3-tuple with the following entries:
- - video (Tensor[T, H, W, C] or Tensor[T, C, H, W]): The `T` video frames
- - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
- and `L` is the number of points
- - label (int): class of the video clip
- """
- def __init__(
- self,
- root: str,
- annotation_path: str,
- frames_per_clip: int,
- step_between_clips: int = 1,
- frame_rate: Optional[int] = None,
- fold: int = 1,
- train: bool = True,
- transform: Optional[Callable] = None,
- _precomputed_metadata: Optional[Dict[str, Any]] = None,
- num_workers: int = 1,
- _video_width: int = 0,
- _video_height: int = 0,
- _video_min_dimension: int = 0,
- _audio_samples: int = 0,
- output_format: str = "THWC",
- ) -> None:
- super().__init__(root)
- if not 1 <= fold <= 3:
- raise ValueError(f"fold should be between 1 and 3, got {fold}")
- extensions = ("avi",)
- self.fold = fold
- self.train = train
- self.classes, class_to_idx = find_classes(self.root)
- self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None)
- video_list = [x[0] for x in self.samples]
- video_clips = VideoClips(
- video_list,
- frames_per_clip,
- step_between_clips,
- frame_rate,
- _precomputed_metadata,
- num_workers=num_workers,
- _video_width=_video_width,
- _video_height=_video_height,
- _video_min_dimension=_video_min_dimension,
- _audio_samples=_audio_samples,
- output_format=output_format,
- )
- # we bookkeep the full version of video clips because we want to be able
- # to return the metadata of full version rather than the subset version of
- # video clips
- self.full_video_clips = video_clips
- self.indices = self._select_fold(video_list, annotation_path, fold, train)
- self.video_clips = video_clips.subset(self.indices)
- self.transform = transform
- @property
- def metadata(self) -> Dict[str, Any]:
- return self.full_video_clips.metadata
- def _select_fold(self, video_list: List[str], annotation_path: str, fold: int, train: bool) -> List[int]:
- name = "train" if train else "test"
- name = f"{name}list{fold:02d}.txt"
- f = os.path.join(annotation_path, name)
- selected_files = set()
- with open(f) as fid:
- data = fid.readlines()
- data = [x.strip().split(" ")[0] for x in data]
- data = [os.path.join(self.root, *x.split("/")) for x in data]
- selected_files.update(data)
- indices = [i for i in range(len(video_list)) if video_list[i] in selected_files]
- return indices
- def __len__(self) -> int:
- return self.video_clips.num_clips()
- def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
- video, audio, info, video_idx = self.video_clips.get_clip(idx)
- label = self.samples[self.indices[video_idx]][1]
- if self.transform is not None:
- video = self.transform(video)
- return video, audio, label
|