123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- import os.path
- from typing import Any, Callable, cast, Optional, Tuple
- import numpy as np
- from PIL import Image
- from .utils import check_integrity, download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class STL10(VisionDataset):
- """`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset.
- Args:
- root (string): Root directory of dataset where directory
- ``stl10_binary`` exists.
- split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}.
- Accordingly, dataset is selected.
- folds (int, optional): One of {0-9} or None.
- For training, loads one of the 10 pre-defined folds of 1k samples for the
- standard evaluation procedure. If no value is passed, loads the 5k samples.
- transform (callable, optional): A function/transform that takes in an PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): If true, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- base_folder = "stl10_binary"
- url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz"
- filename = "stl10_binary.tar.gz"
- tgz_md5 = "91f7769df0f17e558f3565bffb0c7dfb"
- class_names_file = "class_names.txt"
- folds_list_file = "fold_indices.txt"
- train_list = [
- ["train_X.bin", "918c2871b30a85fa023e0c44e0bee87f"],
- ["train_y.bin", "5a34089d4802c674881badbb80307741"],
- ["unlabeled_X.bin", "5242ba1fed5e4be9e1e742405eb56ca4"],
- ]
- test_list = [["test_X.bin", "7f263ba9f9e0b06b93213547f721ac82"], ["test_y.bin", "36f9794fa4beb8a2c72628de14fa638e"]]
- splits = ("train", "train+unlabeled", "unlabeled", "test")
- def __init__(
- self,
- root: str,
- split: str = "train",
- folds: Optional[int] = None,
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.split = verify_str_arg(split, "split", self.splits)
- self.folds = self._verify_folds(folds)
- if download:
- self.download()
- elif not self._check_integrity():
- raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
- # now load the picked numpy arrays
- self.labels: Optional[np.ndarray]
- if self.split == "train":
- self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
- self.labels = cast(np.ndarray, self.labels)
- self.__load_folds(folds)
- elif self.split == "train+unlabeled":
- self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
- self.labels = cast(np.ndarray, self.labels)
- self.__load_folds(folds)
- unlabeled_data, _ = self.__loadfile(self.train_list[2][0])
- self.data = np.concatenate((self.data, unlabeled_data))
- self.labels = np.concatenate((self.labels, np.asarray([-1] * unlabeled_data.shape[0])))
- elif self.split == "unlabeled":
- self.data, _ = self.__loadfile(self.train_list[2][0])
- self.labels = np.asarray([-1] * self.data.shape[0])
- else: # self.split == 'test':
- self.data, self.labels = self.__loadfile(self.test_list[0][0], self.test_list[1][0])
- class_file = os.path.join(self.root, self.base_folder, self.class_names_file)
- if os.path.isfile(class_file):
- with open(class_file) as f:
- self.classes = f.read().splitlines()
- def _verify_folds(self, folds: Optional[int]) -> Optional[int]:
- if folds is None:
- return folds
- elif isinstance(folds, int):
- if folds in range(10):
- return folds
- msg = "Value for argument folds should be in the range [0, 10), but got {}."
- raise ValueError(msg.format(folds))
- else:
- msg = "Expected type None or int for argument folds, but got type {}."
- raise ValueError(msg.format(type(folds)))
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: (image, target) where target is index of the target class.
- """
- target: Optional[int]
- if self.labels is not None:
- img, target = self.data[index], int(self.labels[index])
- else:
- img, target = self.data[index], None
- # doing this so that it is consistent with all other datasets
- # to return a PIL Image
- img = Image.fromarray(np.transpose(img, (1, 2, 0)))
- if self.transform is not None:
- img = self.transform(img)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return self.data.shape[0]
- def __loadfile(self, data_file: str, labels_file: Optional[str] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]:
- labels = None
- if labels_file:
- path_to_labels = os.path.join(self.root, self.base_folder, labels_file)
- with open(path_to_labels, "rb") as f:
- labels = np.fromfile(f, dtype=np.uint8) - 1 # 0-based
- path_to_data = os.path.join(self.root, self.base_folder, data_file)
- with open(path_to_data, "rb") as f:
- # read whole file in uint8 chunks
- everything = np.fromfile(f, dtype=np.uint8)
- images = np.reshape(everything, (-1, 3, 96, 96))
- images = np.transpose(images, (0, 1, 3, 2))
- return images, labels
- def _check_integrity(self) -> bool:
- for filename, md5 in self.train_list + self.test_list:
- fpath = os.path.join(self.root, self.base_folder, filename)
- if not check_integrity(fpath, md5):
- return False
- return True
- def download(self) -> None:
- if self._check_integrity():
- print("Files already downloaded and verified")
- return
- download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
- self._check_integrity()
- def extra_repr(self) -> str:
- return "Split: {split}".format(**self.__dict__)
- def __load_folds(self, folds: Optional[int]) -> None:
- # loads one of the folds if specified
- if folds is None:
- return
- path_to_folds = os.path.join(self.root, self.base_folder, self.folds_list_file)
- with open(path_to_folds) as f:
- str_idx = f.read().splitlines()[folds]
- list_idx = np.fromstring(str_idx, dtype=np.int64, sep=" ")
- self.data = self.data[list_idx, :, :, :]
- if self.labels is not None:
- self.labels = self.labels[list_idx]
|