123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- import pathlib
- from typing import Any, Callable, Optional, Tuple
- from PIL import Image
- from .utils import download_and_extract_archive, download_url, verify_str_arg
- from .vision import VisionDataset
- class StanfordCars(VisionDataset):
- """`Stanford Cars <https://ai.stanford.edu/~jkrause/cars/car_dataset.html>`_ Dataset
- The Cars dataset contains 16,185 images of 196 classes of cars. The data is
- split into 8,144 training images and 8,041 testing images, where each class
- has been split roughly in a 50-50 split
- .. note::
- This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.
- Args:
- root (string): Root directory of dataset
- split (string, optional): The dataset split, supports ``"train"`` (default) or ``"test"``.
- transform (callable, optional): A function/transform that takes in an PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again."""
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- try:
- import scipy.io as sio
- except ImportError:
- raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy")
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._split = verify_str_arg(split, "split", ("train", "test"))
- self._base_folder = pathlib.Path(root) / "stanford_cars"
- devkit = self._base_folder / "devkit"
- if self._split == "train":
- self._annotations_mat_path = devkit / "cars_train_annos.mat"
- self._images_base_path = self._base_folder / "cars_train"
- else:
- self._annotations_mat_path = self._base_folder / "cars_test_annos_withlabels.mat"
- self._images_base_path = self._base_folder / "cars_test"
- if download:
- self.download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- self._samples = [
- (
- str(self._images_base_path / annotation["fname"]),
- annotation["class"] - 1, # Original target mapping starts from 1, hence -1
- )
- for annotation in sio.loadmat(self._annotations_mat_path, squeeze_me=True)["annotations"]
- ]
- self.classes = sio.loadmat(str(devkit / "cars_meta.mat"), squeeze_me=True)["class_names"].tolist()
- self.class_to_idx = {cls: i for i, cls in enumerate(self.classes)}
- def __len__(self) -> int:
- return len(self._samples)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- """Returns pil_image and class_id for given index"""
- image_path, target = self._samples[idx]
- pil_image = Image.open(image_path).convert("RGB")
- if self.transform is not None:
- pil_image = self.transform(pil_image)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return pil_image, target
- def download(self) -> None:
- if self._check_exists():
- return
- download_and_extract_archive(
- url="https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz",
- download_root=str(self._base_folder),
- md5="c3b158d763b6e2245038c8ad08e45376",
- )
- if self._split == "train":
- download_and_extract_archive(
- url="https://ai.stanford.edu/~jkrause/car196/cars_train.tgz",
- download_root=str(self._base_folder),
- md5="065e5b463ae28d29e77c1b4b166cfe61",
- )
- else:
- download_and_extract_archive(
- url="https://ai.stanford.edu/~jkrause/car196/cars_test.tgz",
- download_root=str(self._base_folder),
- md5="4ce7ebf6a94d07f1952d94dd34c4d501",
- )
- download_url(
- url="https://ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat",
- root=str(self._base_folder),
- md5="b0a2b23655a3edd16d84508592a98d10",
- )
- def _check_exists(self) -> bool:
- if not (self._base_folder / "devkit").is_dir():
- return False
- return self._annotations_mat_path.exists() and self._images_base_path.is_dir()
|