123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- import pathlib
- from typing import Any, Callable, Optional, Tuple
- from PIL import Image
- from .utils import _decompress, download_file_from_google_drive, verify_str_arg
- from .vision import VisionDataset
- class PCAM(VisionDataset):
- """`PCAM Dataset <https://github.com/basveeling/pcam>`_.
- The PatchCamelyon dataset is a binary classification dataset with 327,680
- color images (96px x 96px), extracted from histopathologic scans of lymph node
- sections. Each image is annotated with a binary label indicating presence of
- metastatic tissue.
- This dataset requires the ``h5py`` package which you can install with ``pip install h5py``.
- Args:
- root (string): Root directory of the dataset.
- split (string, optional): The dataset split, supports ``"train"`` (default), ``"test"`` or ``"val"``.
- transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
- version. E.g, ``transforms.RandomCrop``.
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/pcam``. If
- dataset is already downloaded, it is not downloaded again.
- """
- _FILES = {
- "train": {
- "images": (
- "camelyonpatch_level_2_split_train_x.h5", # Data file name
- "1Ka0XfEMiwgCYPdTI-vv6eUElOBnKFKQ2", # Google Drive ID
- "1571f514728f59376b705fc836ff4b63", # md5 hash
- ),
- "targets": (
- "camelyonpatch_level_2_split_train_y.h5",
- "1269yhu3pZDP8UYFQs-NYs3FPwuK-nGSG",
- "35c2d7259d906cfc8143347bb8e05be7",
- ),
- },
- "test": {
- "images": (
- "camelyonpatch_level_2_split_test_x.h5",
- "1qV65ZqZvWzuIVthK8eVDhIwrbnsJdbg_",
- "d8c2d60d490dbd479f8199bdfa0cf6ec",
- ),
- "targets": (
- "camelyonpatch_level_2_split_test_y.h5",
- "17BHrSrwWKjYsOgTMmoqrIjDy6Fa2o_gP",
- "60a7035772fbdb7f34eb86d4420cf66a",
- ),
- },
- "val": {
- "images": (
- "camelyonpatch_level_2_split_valid_x.h5",
- "1hgshYGWK8V-eGRy8LToWJJgDU_rXWVJ3",
- "d5b63470df7cfa627aeec8b9dc0c066e",
- ),
- "targets": (
- "camelyonpatch_level_2_split_valid_y.h5",
- "1bH8ZRbhSVAhScTS0p9-ZzGnX91cHT3uO",
- "2b85f58b927af9964a4c15b8f7e8f179",
- ),
- },
- }
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ):
- try:
- import h5py
- self.h5py = h5py
- except ImportError:
- raise RuntimeError(
- "h5py is not found. This dataset needs to have h5py installed: please run pip install h5py"
- )
- self._split = verify_str_arg(split, "split", ("train", "test", "val"))
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._base_folder = pathlib.Path(self.root) / "pcam"
- if download:
- self._download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- def __len__(self) -> int:
- images_file = self._FILES[self._split]["images"][0]
- with self.h5py.File(self._base_folder / images_file) as images_data:
- return images_data["x"].shape[0]
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- images_file = self._FILES[self._split]["images"][0]
- with self.h5py.File(self._base_folder / images_file) as images_data:
- image = Image.fromarray(images_data["x"][idx]).convert("RGB")
- targets_file = self._FILES[self._split]["targets"][0]
- with self.h5py.File(self._base_folder / targets_file) as targets_data:
- target = int(targets_data["y"][idx, 0, 0, 0]) # shape is [num_images, 1, 1, 1]
- if self.transform:
- image = self.transform(image)
- if self.target_transform:
- target = self.target_transform(target)
- return image, target
- def _check_exists(self) -> bool:
- images_file = self._FILES[self._split]["images"][0]
- targets_file = self._FILES[self._split]["targets"][0]
- return all(self._base_folder.joinpath(h5_file).exists() for h5_file in (images_file, targets_file))
- def _download(self) -> None:
- if self._check_exists():
- return
- for file_name, file_id, md5 in self._FILES[self._split].values():
- archive_name = file_name + ".gz"
- download_file_from_google_drive(file_id, str(self._base_folder), filename=archive_name, md5=md5)
- _decompress(str(self._base_folder / archive_name))
|