oxford_iiit_pet.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. import os
  2. import os.path
  3. import pathlib
  4. from typing import Any, Callable, Optional, Sequence, Tuple, Union
  5. from PIL import Image
  6. from .utils import download_and_extract_archive, verify_str_arg
  7. from .vision import VisionDataset
  8. class OxfordIIITPet(VisionDataset):
  9. """`Oxford-IIIT Pet Dataset <https://www.robots.ox.ac.uk/~vgg/data/pets/>`_.
  10. Args:
  11. root (string): Root directory of the dataset.
  12. split (string, optional): The dataset split, supports ``"trainval"`` (default) or ``"test"``.
  13. target_types (string, sequence of strings, optional): Types of target to use. Can be ``category`` (default) or
  14. ``segmentation``. Can also be a list to output a tuple with all specified target types. The types represent:
  15. - ``category`` (int): Label for one of the 37 pet categories.
  16. - ``segmentation`` (PIL image): Segmentation trimap of the image.
  17. If empty, ``None`` will be returned as target.
  18. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
  19. version. E.g, ``transforms.RandomCrop``.
  20. target_transform (callable, optional): A function/transform that takes in the target and transforms it.
  21. download (bool, optional): If True, downloads the dataset from the internet and puts it into
  22. ``root/oxford-iiit-pet``. If dataset is already downloaded, it is not downloaded again.
  23. """
  24. _RESOURCES = (
  25. ("https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz", "5c4f3ee8e5d25df40f4fd59a7f44e54c"),
  26. ("https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz", "95a8c909bbe2e81eed6a22bccdf3f68f"),
  27. )
  28. _VALID_TARGET_TYPES = ("category", "segmentation")
  29. def __init__(
  30. self,
  31. root: str,
  32. split: str = "trainval",
  33. target_types: Union[Sequence[str], str] = "category",
  34. transforms: Optional[Callable] = None,
  35. transform: Optional[Callable] = None,
  36. target_transform: Optional[Callable] = None,
  37. download: bool = False,
  38. ):
  39. self._split = verify_str_arg(split, "split", ("trainval", "test"))
  40. if isinstance(target_types, str):
  41. target_types = [target_types]
  42. self._target_types = [
  43. verify_str_arg(target_type, "target_types", self._VALID_TARGET_TYPES) for target_type in target_types
  44. ]
  45. super().__init__(root, transforms=transforms, transform=transform, target_transform=target_transform)
  46. self._base_folder = pathlib.Path(self.root) / "oxford-iiit-pet"
  47. self._images_folder = self._base_folder / "images"
  48. self._anns_folder = self._base_folder / "annotations"
  49. self._segs_folder = self._anns_folder / "trimaps"
  50. if download:
  51. self._download()
  52. if not self._check_exists():
  53. raise RuntimeError("Dataset not found. You can use download=True to download it")
  54. image_ids = []
  55. self._labels = []
  56. with open(self._anns_folder / f"{self._split}.txt") as file:
  57. for line in file:
  58. image_id, label, *_ = line.strip().split()
  59. image_ids.append(image_id)
  60. self._labels.append(int(label) - 1)
  61. self.classes = [
  62. " ".join(part.title() for part in raw_cls.split("_"))
  63. for raw_cls, _ in sorted(
  64. {(image_id.rsplit("_", 1)[0], label) for image_id, label in zip(image_ids, self._labels)},
  65. key=lambda image_id_and_label: image_id_and_label[1],
  66. )
  67. ]
  68. self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
  69. self._images = [self._images_folder / f"{image_id}.jpg" for image_id in image_ids]
  70. self._segs = [self._segs_folder / f"{image_id}.png" for image_id in image_ids]
  71. def __len__(self) -> int:
  72. return len(self._images)
  73. def __getitem__(self, idx: int) -> Tuple[Any, Any]:
  74. image = Image.open(self._images[idx]).convert("RGB")
  75. target: Any = []
  76. for target_type in self._target_types:
  77. if target_type == "category":
  78. target.append(self._labels[idx])
  79. else: # target_type == "segmentation"
  80. target.append(Image.open(self._segs[idx]))
  81. if not target:
  82. target = None
  83. elif len(target) == 1:
  84. target = target[0]
  85. else:
  86. target = tuple(target)
  87. if self.transforms:
  88. image, target = self.transforms(image, target)
  89. return image, target
  90. def _check_exists(self) -> bool:
  91. for folder in (self._images_folder, self._anns_folder):
  92. if not (os.path.exists(folder) and os.path.isdir(folder)):
  93. return False
  94. else:
  95. return True
  96. def _download(self) -> None:
  97. if self._check_exists():
  98. return
  99. for url, md5 in self._RESOURCES:
  100. download_and_extract_archive(url, download_root=str(self._base_folder), md5=md5)