123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- import os
- import os.path
- import pathlib
- from typing import Any, Callable, Optional, Sequence, Tuple, Union
- from PIL import Image
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class OxfordIIITPet(VisionDataset):
- """`Oxford-IIIT Pet Dataset <https://www.robots.ox.ac.uk/~vgg/data/pets/>`_.
- Args:
- root (string): Root directory of the dataset.
- split (string, optional): The dataset split, supports ``"trainval"`` (default) or ``"test"``.
- target_types (string, sequence of strings, optional): Types of target to use. Can be ``category`` (default) or
- ``segmentation``. Can also be a list to output a tuple with all specified target types. The types represent:
- - ``category`` (int): Label for one of the 37 pet categories.
- - ``segmentation`` (PIL image): Segmentation trimap of the image.
- If empty, ``None`` will be returned as target.
- transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
- version. E.g, ``transforms.RandomCrop``.
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and puts it into
- ``root/oxford-iiit-pet``. If dataset is already downloaded, it is not downloaded again.
- """
- _RESOURCES = (
- ("https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz", "5c4f3ee8e5d25df40f4fd59a7f44e54c"),
- ("https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz", "95a8c909bbe2e81eed6a22bccdf3f68f"),
- )
- _VALID_TARGET_TYPES = ("category", "segmentation")
- def __init__(
- self,
- root: str,
- split: str = "trainval",
- target_types: Union[Sequence[str], str] = "category",
- transforms: Optional[Callable] = None,
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ):
- self._split = verify_str_arg(split, "split", ("trainval", "test"))
- if isinstance(target_types, str):
- target_types = [target_types]
- self._target_types = [
- verify_str_arg(target_type, "target_types", self._VALID_TARGET_TYPES) for target_type in target_types
- ]
- super().__init__(root, transforms=transforms, transform=transform, target_transform=target_transform)
- self._base_folder = pathlib.Path(self.root) / "oxford-iiit-pet"
- self._images_folder = self._base_folder / "images"
- self._anns_folder = self._base_folder / "annotations"
- self._segs_folder = self._anns_folder / "trimaps"
- if download:
- self._download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- image_ids = []
- self._labels = []
- with open(self._anns_folder / f"{self._split}.txt") as file:
- for line in file:
- image_id, label, *_ = line.strip().split()
- image_ids.append(image_id)
- self._labels.append(int(label) - 1)
- self.classes = [
- " ".join(part.title() for part in raw_cls.split("_"))
- for raw_cls, _ in sorted(
- {(image_id.rsplit("_", 1)[0], label) for image_id, label in zip(image_ids, self._labels)},
- key=lambda image_id_and_label: image_id_and_label[1],
- )
- ]
- self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
- self._images = [self._images_folder / f"{image_id}.jpg" for image_id in image_ids]
- self._segs = [self._segs_folder / f"{image_id}.png" for image_id in image_ids]
- def __len__(self) -> int:
- return len(self._images)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- image = Image.open(self._images[idx]).convert("RGB")
- target: Any = []
- for target_type in self._target_types:
- if target_type == "category":
- target.append(self._labels[idx])
- else: # target_type == "segmentation"
- target.append(Image.open(self._segs[idx]))
- if not target:
- target = None
- elif len(target) == 1:
- target = target[0]
- else:
- target = tuple(target)
- if self.transforms:
- image, target = self.transforms(image, target)
- return image, target
- def _check_exists(self) -> bool:
- for folder in (self._images_folder, self._anns_folder):
- if not (os.path.exists(folder) and os.path.isdir(folder)):
- return False
- else:
- return True
- def _download(self) -> None:
- if self._check_exists():
- return
- for url, md5 in self._RESOURCES:
- download_and_extract_archive(url, download_root=str(self._base_folder), md5=md5)
|