123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import os.path
- from typing import Callable, Optional
- import numpy as np
- import torch
- from torchvision.datasets.utils import download_url, verify_str_arg
- from torchvision.datasets.vision import VisionDataset
- class MovingMNIST(VisionDataset):
- """`MovingMNIST <http://www.cs.toronto.edu/~nitish/unsupervised_video/>`_ Dataset.
- Args:
- root (string): Root directory of dataset where ``MovingMNIST/mnist_test_seq.npy`` exists.
- split (string, optional): The dataset split, supports ``None`` (default), ``"train"`` and ``"test"``.
- If ``split=None``, the full data is returned.
- split_ratio (int, optional): The split ratio of number of frames. If ``split="train"``, the first split
- frames ``data[:, :split_ratio]`` is returned. If ``split="test"``, the last split frames ``data[:, split_ratio:]``
- is returned. If ``split=None``, this parameter is ignored and the all frames data is returned.
- transform (callable, optional): A function/transform that takes in an torch Tensor
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- download (bool, optional): If true, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- _URL = "http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy"
- def __init__(
- self,
- root: str,
- split: Optional[str] = None,
- split_ratio: int = 10,
- download: bool = False,
- transform: Optional[Callable] = None,
- ) -> None:
- super().__init__(root, transform=transform)
- self._base_folder = os.path.join(self.root, self.__class__.__name__)
- self._filename = self._URL.split("/")[-1]
- if split is not None:
- verify_str_arg(split, "split", ("train", "test"))
- self.split = split
- if not isinstance(split_ratio, int):
- raise TypeError(f"`split_ratio` should be an integer, but got {type(split_ratio)}")
- elif not (1 <= split_ratio <= 19):
- raise ValueError(f"`split_ratio` should be `1 <= split_ratio <= 19`, but got {split_ratio} instead.")
- self.split_ratio = split_ratio
- if download:
- self.download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it.")
- data = torch.from_numpy(np.load(os.path.join(self._base_folder, self._filename)))
- if self.split == "train":
- data = data[: self.split_ratio]
- elif self.split == "test":
- data = data[self.split_ratio :]
- self.data = data.transpose(0, 1).unsqueeze(2).contiguous()
- def __getitem__(self, idx: int) -> torch.Tensor:
- """
- Args:
- index (int): Index
- Returns:
- torch.Tensor: Video frames (torch Tensor[T, C, H, W]). The `T` is the number of frames.
- """
- data = self.data[idx]
- if self.transform is not None:
- data = self.transform(data)
- return data
- def __len__(self) -> int:
- return len(self.data)
- def _check_exists(self) -> bool:
- return os.path.exists(os.path.join(self._base_folder, self._filename))
- def download(self) -> None:
- if self._check_exists():
- return
- download_url(
- url=self._URL,
- root=self._base_folder,
- filename=self._filename,
- md5="be083ec986bfe91a449d63653c411eb2",
- )
|