lfw.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. import os
  2. from typing import Any, Callable, Dict, List, Optional, Tuple, Union
  3. from PIL import Image
  4. from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg
  5. from .vision import VisionDataset
  6. class _LFW(VisionDataset):
  7. base_folder = "lfw-py"
  8. download_url_prefix = "http://vis-www.cs.umass.edu/lfw/"
  9. file_dict = {
  10. "original": ("lfw", "lfw.tgz", "a17d05bd522c52d84eca14327a23d494"),
  11. "funneled": ("lfw_funneled", "lfw-funneled.tgz", "1b42dfed7d15c9b2dd63d5e5840c86ad"),
  12. "deepfunneled": ("lfw-deepfunneled", "lfw-deepfunneled.tgz", "68331da3eb755a505a502b5aacb3c201"),
  13. }
  14. checksums = {
  15. "pairs.txt": "9f1ba174e4e1c508ff7cdf10ac338a7d",
  16. "pairsDevTest.txt": "5132f7440eb68cf58910c8a45a2ac10b",
  17. "pairsDevTrain.txt": "4f27cbf15b2da4a85c1907eb4181ad21",
  18. "people.txt": "450f0863dd89e85e73936a6d71a3474b",
  19. "peopleDevTest.txt": "e4bf5be0a43b5dcd9dc5ccfcb8fb19c5",
  20. "peopleDevTrain.txt": "54eaac34beb6d042ed3a7d883e247a21",
  21. "lfw-names.txt": "a6d0a479bd074669f656265a6e693f6d",
  22. }
  23. annot_file = {"10fold": "", "train": "DevTrain", "test": "DevTest"}
  24. names = "lfw-names.txt"
  25. def __init__(
  26. self,
  27. root: str,
  28. split: str,
  29. image_set: str,
  30. view: str,
  31. transform: Optional[Callable] = None,
  32. target_transform: Optional[Callable] = None,
  33. download: bool = False,
  34. ) -> None:
  35. super().__init__(os.path.join(root, self.base_folder), transform=transform, target_transform=target_transform)
  36. self.image_set = verify_str_arg(image_set.lower(), "image_set", self.file_dict.keys())
  37. images_dir, self.filename, self.md5 = self.file_dict[self.image_set]
  38. self.view = verify_str_arg(view.lower(), "view", ["people", "pairs"])
  39. self.split = verify_str_arg(split.lower(), "split", ["10fold", "train", "test"])
  40. self.labels_file = f"{self.view}{self.annot_file[self.split]}.txt"
  41. self.data: List[Any] = []
  42. if download:
  43. self.download()
  44. if not self._check_integrity():
  45. raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
  46. self.images_dir = os.path.join(self.root, images_dir)
  47. def _loader(self, path: str) -> Image.Image:
  48. with open(path, "rb") as f:
  49. img = Image.open(f)
  50. return img.convert("RGB")
  51. def _check_integrity(self) -> bool:
  52. st1 = check_integrity(os.path.join(self.root, self.filename), self.md5)
  53. st2 = check_integrity(os.path.join(self.root, self.labels_file), self.checksums[self.labels_file])
  54. if not st1 or not st2:
  55. return False
  56. if self.view == "people":
  57. return check_integrity(os.path.join(self.root, self.names), self.checksums[self.names])
  58. return True
  59. def download(self) -> None:
  60. if self._check_integrity():
  61. print("Files already downloaded and verified")
  62. return
  63. url = f"{self.download_url_prefix}{self.filename}"
  64. download_and_extract_archive(url, self.root, filename=self.filename, md5=self.md5)
  65. download_url(f"{self.download_url_prefix}{self.labels_file}", self.root)
  66. if self.view == "people":
  67. download_url(f"{self.download_url_prefix}{self.names}", self.root)
  68. def _get_path(self, identity: str, no: Union[int, str]) -> str:
  69. return os.path.join(self.images_dir, identity, f"{identity}_{int(no):04d}.jpg")
  70. def extra_repr(self) -> str:
  71. return f"Alignment: {self.image_set}\nSplit: {self.split}"
  72. def __len__(self) -> int:
  73. return len(self.data)
  74. class LFWPeople(_LFW):
  75. """`LFW <http://vis-www.cs.umass.edu/lfw/>`_ Dataset.
  76. Args:
  77. root (string): Root directory of dataset where directory
  78. ``lfw-py`` exists or will be saved to if download is set to True.
  79. split (string, optional): The image split to use. Can be one of ``train``, ``test``,
  80. ``10fold`` (default).
  81. image_set (str, optional): Type of image funneling to use, ``original``, ``funneled`` or
  82. ``deepfunneled``. Defaults to ``funneled``.
  83. transform (callable, optional): A function/transform that takes in an PIL image
  84. and returns a transformed version. E.g, ``transforms.RandomRotation``
  85. target_transform (callable, optional): A function/transform that takes in the
  86. target and transforms it.
  87. download (bool, optional): If true, downloads the dataset from the internet and
  88. puts it in root directory. If dataset is already downloaded, it is not
  89. downloaded again.
  90. """
  91. def __init__(
  92. self,
  93. root: str,
  94. split: str = "10fold",
  95. image_set: str = "funneled",
  96. transform: Optional[Callable] = None,
  97. target_transform: Optional[Callable] = None,
  98. download: bool = False,
  99. ) -> None:
  100. super().__init__(root, split, image_set, "people", transform, target_transform, download)
  101. self.class_to_idx = self._get_classes()
  102. self.data, self.targets = self._get_people()
  103. def _get_people(self) -> Tuple[List[str], List[int]]:
  104. data, targets = [], []
  105. with open(os.path.join(self.root, self.labels_file)) as f:
  106. lines = f.readlines()
  107. n_folds, s = (int(lines[0]), 1) if self.split == "10fold" else (1, 0)
  108. for fold in range(n_folds):
  109. n_lines = int(lines[s])
  110. people = [line.strip().split("\t") for line in lines[s + 1 : s + n_lines + 1]]
  111. s += n_lines + 1
  112. for i, (identity, num_imgs) in enumerate(people):
  113. for num in range(1, int(num_imgs) + 1):
  114. img = self._get_path(identity, num)
  115. data.append(img)
  116. targets.append(self.class_to_idx[identity])
  117. return data, targets
  118. def _get_classes(self) -> Dict[str, int]:
  119. with open(os.path.join(self.root, self.names)) as f:
  120. lines = f.readlines()
  121. names = [line.strip().split()[0] for line in lines]
  122. class_to_idx = {name: i for i, name in enumerate(names)}
  123. return class_to_idx
  124. def __getitem__(self, index: int) -> Tuple[Any, Any]:
  125. """
  126. Args:
  127. index (int): Index
  128. Returns:
  129. tuple: Tuple (image, target) where target is the identity of the person.
  130. """
  131. img = self._loader(self.data[index])
  132. target = self.targets[index]
  133. if self.transform is not None:
  134. img = self.transform(img)
  135. if self.target_transform is not None:
  136. target = self.target_transform(target)
  137. return img, target
  138. def extra_repr(self) -> str:
  139. return super().extra_repr() + f"\nClasses (identities): {len(self.class_to_idx)}"
  140. class LFWPairs(_LFW):
  141. """`LFW <http://vis-www.cs.umass.edu/lfw/>`_ Dataset.
  142. Args:
  143. root (string): Root directory of dataset where directory
  144. ``lfw-py`` exists or will be saved to if download is set to True.
  145. split (string, optional): The image split to use. Can be one of ``train``, ``test``,
  146. ``10fold``. Defaults to ``10fold``.
  147. image_set (str, optional): Type of image funneling to use, ``original``, ``funneled`` or
  148. ``deepfunneled``. Defaults to ``funneled``.
  149. transform (callable, optional): A function/transform that takes in an PIL image
  150. and returns a transformed version. E.g, ``transforms.RandomRotation``
  151. target_transform (callable, optional): A function/transform that takes in the
  152. target and transforms it.
  153. download (bool, optional): If true, downloads the dataset from the internet and
  154. puts it in root directory. If dataset is already downloaded, it is not
  155. downloaded again.
  156. """
  157. def __init__(
  158. self,
  159. root: str,
  160. split: str = "10fold",
  161. image_set: str = "funneled",
  162. transform: Optional[Callable] = None,
  163. target_transform: Optional[Callable] = None,
  164. download: bool = False,
  165. ) -> None:
  166. super().__init__(root, split, image_set, "pairs", transform, target_transform, download)
  167. self.pair_names, self.data, self.targets = self._get_pairs(self.images_dir)
  168. def _get_pairs(self, images_dir: str) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[int]]:
  169. pair_names, data, targets = [], [], []
  170. with open(os.path.join(self.root, self.labels_file)) as f:
  171. lines = f.readlines()
  172. if self.split == "10fold":
  173. n_folds, n_pairs = lines[0].split("\t")
  174. n_folds, n_pairs = int(n_folds), int(n_pairs)
  175. else:
  176. n_folds, n_pairs = 1, int(lines[0])
  177. s = 1
  178. for fold in range(n_folds):
  179. matched_pairs = [line.strip().split("\t") for line in lines[s : s + n_pairs]]
  180. unmatched_pairs = [line.strip().split("\t") for line in lines[s + n_pairs : s + (2 * n_pairs)]]
  181. s += 2 * n_pairs
  182. for pair in matched_pairs:
  183. img1, img2, same = self._get_path(pair[0], pair[1]), self._get_path(pair[0], pair[2]), 1
  184. pair_names.append((pair[0], pair[0]))
  185. data.append((img1, img2))
  186. targets.append(same)
  187. for pair in unmatched_pairs:
  188. img1, img2, same = self._get_path(pair[0], pair[1]), self._get_path(pair[2], pair[3]), 0
  189. pair_names.append((pair[0], pair[2]))
  190. data.append((img1, img2))
  191. targets.append(same)
  192. return pair_names, data, targets
  193. def __getitem__(self, index: int) -> Tuple[Any, Any, int]:
  194. """
  195. Args:
  196. index (int): Index
  197. Returns:
  198. tuple: (image1, image2, target) where target is `0` for different indentities and `1` for same identities.
  199. """
  200. img1, img2 = self.data[index]
  201. img1, img2 = self._loader(img1), self._loader(img2)
  202. target = self.targets[index]
  203. if self.transform is not None:
  204. img1, img2 = self.transform(img1), self.transform(img2)
  205. if self.target_transform is not None:
  206. target = self.target_transform(target)
  207. return img1, img2, target