123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- import csv
- import pathlib
- from typing import Any, Callable, Optional, Tuple
- import PIL
- from .folder import make_dataset
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class GTSRB(VisionDataset):
- """`German Traffic Sign Recognition Benchmark (GTSRB) <https://benchmark.ini.rub.de/>`_ Dataset.
- Args:
- root (string): Root directory of the dataset.
- split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``.
- transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed
- version. E.g, ``transforms.RandomCrop``.
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._split = verify_str_arg(split, "split", ("train", "test"))
- self._base_folder = pathlib.Path(root) / "gtsrb"
- self._target_folder = (
- self._base_folder / "GTSRB" / ("Training" if self._split == "train" else "Final_Test/Images")
- )
- if download:
- self.download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- if self._split == "train":
- samples = make_dataset(str(self._target_folder), extensions=(".ppm",))
- else:
- with open(self._base_folder / "GT-final_test.csv") as csv_file:
- samples = [
- (str(self._target_folder / row["Filename"]), int(row["ClassId"]))
- for row in csv.DictReader(csv_file, delimiter=";", skipinitialspace=True)
- ]
- self._samples = samples
- self.transform = transform
- self.target_transform = target_transform
- def __len__(self) -> int:
- return len(self._samples)
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- path, target = self._samples[index]
- sample = PIL.Image.open(path).convert("RGB")
- if self.transform is not None:
- sample = self.transform(sample)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return sample, target
- def _check_exists(self) -> bool:
- return self._target_folder.is_dir()
- def download(self) -> None:
- if self._check_exists():
- return
- base_url = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/"
- if self._split == "train":
- download_and_extract_archive(
- f"{base_url}GTSRB-Training_fixed.zip",
- download_root=str(self._base_folder),
- md5="513f3c79a4c5141765e10e952eaa2478",
- )
- else:
- download_and_extract_archive(
- f"{base_url}GTSRB_Final_Test_Images.zip",
- download_root=str(self._base_folder),
- md5="c7e4e6327067d32654124b0fe9e82185",
- )
- download_and_extract_archive(
- f"{base_url}GTSRB_Final_Test_GT.zip",
- download_root=str(self._base_folder),
- md5="fe31e9c9270bbcd7b84b7f21a9d9d9e5",
- )
|