123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import json
- from pathlib import Path
- from typing import Any, Callable, Optional, Tuple
- import PIL.Image
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class Food101(VisionDataset):
- """`The Food-101 Data Set <https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/>`_.
- The Food-101 is a challenging data set of 101 food categories with 101,000 images.
- For each class, 250 manually reviewed test images are provided as well as 750 training images.
- On purpose, the training images were not cleaned, and thus still contain some amount of noise.
- This comes mostly in the form of intense colors and sometimes wrong labels. All images were
- rescaled to have a maximum side length of 512 pixels.
- Args:
- root (string): Root directory of the dataset.
- split (string, optional): The dataset split, supports ``"train"`` (default) and ``"test"``.
- transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed
- version. E.g, ``transforms.RandomCrop``.
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again. Default is False.
- """
- _URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"
- _MD5 = "85eeb15f3717b99a5da872d97d918f87"
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._split = verify_str_arg(split, "split", ("train", "test"))
- self._base_folder = Path(self.root) / "food-101"
- self._meta_folder = self._base_folder / "meta"
- self._images_folder = self._base_folder / "images"
- if download:
- self._download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- self._labels = []
- self._image_files = []
- with open(self._meta_folder / f"{split}.json") as f:
- metadata = json.loads(f.read())
- self.classes = sorted(metadata.keys())
- self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
- for class_label, im_rel_paths in metadata.items():
- self._labels += [self.class_to_idx[class_label]] * len(im_rel_paths)
- self._image_files += [
- self._images_folder.joinpath(*f"{im_rel_path}.jpg".split("/")) for im_rel_path in im_rel_paths
- ]
- def __len__(self) -> int:
- return len(self._image_files)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- image_file, label = self._image_files[idx], self._labels[idx]
- image = PIL.Image.open(image_file).convert("RGB")
- if self.transform:
- image = self.transform(image)
- if self.target_transform:
- label = self.target_transform(label)
- return image, label
- def extra_repr(self) -> str:
- return f"split={self._split}"
- def _check_exists(self) -> bool:
- return all(folder.exists() and folder.is_dir() for folder in (self._meta_folder, self._images_folder))
- def _download(self) -> None:
- if self._check_exists():
- return
- download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
|