123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from pathlib import Path
- from typing import Any, Callable, Optional, Tuple
- import PIL.Image
- from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg
- from .vision import VisionDataset
- class Flowers102(VisionDataset):
- """`Oxford 102 Flower <https://www.robots.ox.ac.uk/~vgg/data/flowers/102/>`_ Dataset.
- .. warning::
- This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.
- Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The
- flowers were chosen to be flowers commonly occurring in the United Kingdom. Each class consists of
- between 40 and 258 images.
- The images have large scale, pose and light variations. In addition, there are categories that
- have large variations within the category, and several very similar categories.
- Args:
- root (string): Root directory of the dataset.
- split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``.
- transform (callable, optional): A function/transform that takes in an PIL image and returns a
- transformed version. E.g, ``transforms.RandomCrop``.
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- download (bool, optional): If true, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- _download_url_prefix = "https://www.robots.ox.ac.uk/~vgg/data/flowers/102/"
- _file_dict = { # filename, md5
- "image": ("102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"),
- "label": ("imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"),
- "setid": ("setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c"),
- }
- _splits_map = {"train": "trnid", "val": "valid", "test": "tstid"}
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._split = verify_str_arg(split, "split", ("train", "val", "test"))
- self._base_folder = Path(self.root) / "flowers-102"
- self._images_folder = self._base_folder / "jpg"
- if download:
- self.download()
- if not self._check_integrity():
- raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
- from scipy.io import loadmat
- set_ids = loadmat(self._base_folder / self._file_dict["setid"][0], squeeze_me=True)
- image_ids = set_ids[self._splits_map[self._split]].tolist()
- labels = loadmat(self._base_folder / self._file_dict["label"][0], squeeze_me=True)
- image_id_to_label = dict(enumerate((labels["labels"] - 1).tolist(), 1))
- self._labels = []
- self._image_files = []
- for image_id in image_ids:
- self._labels.append(image_id_to_label[image_id])
- self._image_files.append(self._images_folder / f"image_{image_id:05d}.jpg")
- def __len__(self) -> int:
- return len(self._image_files)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- image_file, label = self._image_files[idx], self._labels[idx]
- image = PIL.Image.open(image_file).convert("RGB")
- if self.transform:
- image = self.transform(image)
- if self.target_transform:
- label = self.target_transform(label)
- return image, label
- def extra_repr(self) -> str:
- return f"split={self._split}"
- def _check_integrity(self):
- if not (self._images_folder.exists() and self._images_folder.is_dir()):
- return False
- for id in ["label", "setid"]:
- filename, md5 = self._file_dict[id]
- if not check_integrity(str(self._base_folder / filename), md5):
- return False
- return True
- def download(self):
- if self._check_integrity():
- return
- download_and_extract_archive(
- f"{self._download_url_prefix}{self._file_dict['image'][0]}",
- str(self._base_folder),
- md5=self._file_dict["image"][1],
- )
- for id in ["label", "setid"]:
- filename, md5 = self._file_dict[id]
- download_url(self._download_url_prefix + filename, str(self._base_folder), md5=md5)
|