123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- from __future__ import annotations
- import os
- from typing import Any, Callable, Optional, Tuple
- import PIL.Image
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class FGVCAircraft(VisionDataset):
- """`FGVC Aircraft <https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/>`_ Dataset.
- The dataset contains 10,000 images of aircraft, with 100 images for each of 100
- different aircraft model variants, most of which are airplanes.
- Aircraft models are organized in a three-levels hierarchy. The three levels, from
- finer to coarser, are:
- - ``variant``, e.g. Boeing 737-700. A variant collapses all the models that are visually
- indistinguishable into one class. The dataset comprises 100 different variants.
- - ``family``, e.g. Boeing 737. The dataset comprises 70 different families.
- - ``manufacturer``, e.g. Boeing. The dataset comprises 30 different manufacturers.
- Args:
- root (string): Root directory of the FGVC Aircraft dataset.
- split (string, optional): The dataset split, supports ``train``, ``val``,
- ``trainval`` and ``test``.
- annotation_level (str, optional): The annotation level, supports ``variant``,
- ``family`` and ``manufacturer``.
- transform (callable, optional): A function/transform that takes in an PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- _URL = "https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz"
- def __init__(
- self,
- root: str,
- split: str = "trainval",
- annotation_level: str = "variant",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._split = verify_str_arg(split, "split", ("train", "val", "trainval", "test"))
- self._annotation_level = verify_str_arg(
- annotation_level, "annotation_level", ("variant", "family", "manufacturer")
- )
- self._data_path = os.path.join(self.root, "fgvc-aircraft-2013b")
- if download:
- self._download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- annotation_file = os.path.join(
- self._data_path,
- "data",
- {
- "variant": "variants.txt",
- "family": "families.txt",
- "manufacturer": "manufacturers.txt",
- }[self._annotation_level],
- )
- with open(annotation_file, "r") as f:
- self.classes = [line.strip() for line in f]
- self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
- image_data_folder = os.path.join(self._data_path, "data", "images")
- labels_file = os.path.join(self._data_path, "data", f"images_{self._annotation_level}_{self._split}.txt")
- self._image_files = []
- self._labels = []
- with open(labels_file, "r") as f:
- for line in f:
- image_name, label_name = line.strip().split(" ", 1)
- self._image_files.append(os.path.join(image_data_folder, f"{image_name}.jpg"))
- self._labels.append(self.class_to_idx[label_name])
- def __len__(self) -> int:
- return len(self._image_files)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- image_file, label = self._image_files[idx], self._labels[idx]
- image = PIL.Image.open(image_file).convert("RGB")
- if self.transform:
- image = self.transform(image)
- if self.target_transform:
- label = self.target_transform(label)
- return image, label
- def _download(self) -> None:
- """
- Download the FGVC Aircraft dataset archive and extract it under root.
- """
- if self._check_exists():
- return
- download_and_extract_archive(self._URL, self.root)
- def _check_exists(self) -> bool:
- return os.path.exists(self._data_path) and os.path.isdir(self._data_path)
|