123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- import os
- import pathlib
- from typing import Any, Callable, Optional, Tuple
- import PIL.Image
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class DTD(VisionDataset):
- """`Describable Textures Dataset (DTD) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_.
- Args:
- root (string): Root directory of the dataset.
- split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``.
- partition (int, optional): The dataset partition. Should be ``1 <= partition <= 10``. Defaults to ``1``.
- .. note::
- The partition only changes which split each image belongs to. Thus, regardless of the selected
- partition, combining all splits will result in all images.
- transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
- version. E.g, ``transforms.RandomCrop``.
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- download (bool, optional): If True, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again. Default is False.
- """
- _URL = "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz"
- _MD5 = "fff73e5086ae6bdbea199a49dfb8a4c1"
- def __init__(
- self,
- root: str,
- split: str = "train",
- partition: int = 1,
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- self._split = verify_str_arg(split, "split", ("train", "val", "test"))
- if not isinstance(partition, int) and not (1 <= partition <= 10):
- raise ValueError(
- f"Parameter 'partition' should be an integer with `1 <= partition <= 10`, "
- f"but got {partition} instead"
- )
- self._partition = partition
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._base_folder = pathlib.Path(self.root) / type(self).__name__.lower()
- self._data_folder = self._base_folder / "dtd"
- self._meta_folder = self._data_folder / "labels"
- self._images_folder = self._data_folder / "images"
- if download:
- self._download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it")
- self._image_files = []
- classes = []
- with open(self._meta_folder / f"{self._split}{self._partition}.txt") as file:
- for line in file:
- cls, name = line.strip().split("/")
- self._image_files.append(self._images_folder.joinpath(cls, name))
- classes.append(cls)
- self.classes = sorted(set(classes))
- self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
- self._labels = [self.class_to_idx[cls] for cls in classes]
- def __len__(self) -> int:
- return len(self._image_files)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- image_file, label = self._image_files[idx], self._labels[idx]
- image = PIL.Image.open(image_file).convert("RGB")
- if self.transform:
- image = self.transform(image)
- if self.target_transform:
- label = self.target_transform(label)
- return image, label
- def extra_repr(self) -> str:
- return f"split={self._split}, partition={self._partition}"
- def _check_exists(self) -> bool:
- return os.path.exists(self._data_folder) and os.path.isdir(self._data_folder)
- def _download(self) -> None:
- if self._check_exists():
- return
- download_and_extract_archive(self._URL, download_root=str(self._base_folder), md5=self._MD5)
|