12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- import json
- import pathlib
- from typing import Any, Callable, List, Optional, Tuple
- from urllib.parse import urlparse
- from PIL import Image
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class CLEVRClassification(VisionDataset):
- """`CLEVR <https://cs.stanford.edu/people/jcjohns/clevr/>`_ classification dataset.
- The number of objects in a scene are used as label.
- Args:
- root (string): Root directory of dataset where directory ``root/clevr`` exists or will be saved to if download is
- set to True.
- split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``.
- transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed
- version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in them target and transforms it.
- download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If
- dataset is already downloaded, it is not downloaded again.
- """
- _URL = "https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip"
- _MD5 = "b11922020e72d0cd9154779b2d3d07d2"
- def __init__(
- self,
- root: str,
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- self._split = verify_str_arg(split, "split", ("train", "val", "test"))
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._base_folder = pathlib.Path(self.root) / "clevr"
- self._data_folder = self._base_folder / pathlib.Path(urlparse(self._URL).path).stem
- if download:
- self._download()
- if not self._check_exists():
- raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
- self._image_files = sorted(self._data_folder.joinpath("images", self._split).glob("*"))
- self._labels: List[Optional[int]]
- if self._split != "test":
- with open(self._data_folder / "scenes" / f"CLEVR_{self._split}_scenes.json") as file:
- content = json.load(file)
- num_objects = {scene["image_filename"]: len(scene["objects"]) for scene in content["scenes"]}
- self._labels = [num_objects[image_file.name] for image_file in self._image_files]
- else:
- self._labels = [None] * len(self._image_files)
- def __len__(self) -> int:
- return len(self._image_files)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- image_file = self._image_files[idx]
- label = self._labels[idx]
- image = Image.open(image_file).convert("RGB")
- if self.transform:
- image = self.transform(image)
- if self.target_transform:
- label = self.target_transform(label)
- return image, label
- def _check_exists(self) -> bool:
- return self._data_folder.exists() and self._data_folder.is_dir()
- def _download(self) -> None:
- if self._check_exists():
- return
- download_and_extract_archive(self._URL, str(self._base_folder), md5=self._MD5)
- def extra_repr(self) -> str:
- return f"split={self._split}"
|