123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480 |
- #include <ATen/ATen.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <torch/library.h>
- #include <ATen/native/cuda/KernelUtils.cuh>
- #include "cuda_helpers.h"
- namespace vision {
- namespace ops {
- namespace {
- template <typename T>
- __device__ T bilinear_interpolate(
- const T* input,
- int height,
- int width,
- T y,
- T x,
- int index /* index for debug only*/) {
- // deal with cases that inverse elements are out of feature map boundary
- if (y < -1.0 || y > height || x < -1.0 || x > width) {
- // empty
- return 0;
- }
- if (y <= 0)
- y = 0;
- if (x <= 0)
- x = 0;
- int y_low = (int)y;
- int x_low = (int)x;
- int y_high;
- int x_high;
- if (y_low >= height - 1) {
- y_high = y_low = height - 1;
- y = (T)y_low;
- } else {
- y_high = y_low + 1;
- }
- if (x_low >= width - 1) {
- x_high = x_low = width - 1;
- x = (T)x_low;
- } else {
- x_high = x_low + 1;
- }
- T ly = y - y_low;
- T lx = x - x_low;
- T hy = 1. - ly, hx = 1. - lx;
- // do bilinear interpolation
- T v1 = input[y_low * width + x_low];
- T v2 = input[y_low * width + x_high];
- T v3 = input[y_high * width + x_low];
- T v4 = input[y_high * width + x_high];
- T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
- T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- return val;
- }
- template <typename T>
- __global__ void roi_align_forward_kernel_impl(
- int nthreads,
- const T* input,
- const T spatial_scale,
- int channels,
- int height,
- int width,
- int pooled_height,
- int pooled_width,
- int sampling_ratio,
- bool aligned,
- const T* rois,
- T* output) {
- CUDA_1D_KERNEL_LOOP(index, nthreads) {
- // (n, c, ph, pw) is an element in the pooled output
- int pw = index % pooled_width;
- int ph = (index / pooled_width) % pooled_height;
- int c = (index / pooled_width / pooled_height) % channels;
- int n = index / pooled_width / pooled_height / channels;
- const T* offset_rois = rois + n * 5;
- int roi_batch_ind = offset_rois[0];
- // Do not using rounding; this implementation detail is critical
- T offset = aligned ? (T)0.5 : (T)0.0;
- T roi_start_w = offset_rois[1] * spatial_scale - offset;
- T roi_start_h = offset_rois[2] * spatial_scale - offset;
- T roi_end_w = offset_rois[3] * spatial_scale - offset;
- T roi_end_h = offset_rois[4] * spatial_scale - offset;
- T roi_width = roi_end_w - roi_start_w;
- T roi_height = roi_end_h - roi_start_h;
- if (!aligned) {
- // Force malformed ROIs to be 1x1
- roi_width = max(roi_width, (T)1.);
- roi_height = max(roi_height, (T)1.);
- }
- T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
- T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
- const T* offset_input =
- input + (roi_batch_ind * channels + c) * height * width;
- // We use roi_bin_grid to sample the grid and mimic integral
- int roi_bin_grid_h = (sampling_ratio > 0)
- ? sampling_ratio
- : ceil(roi_height / pooled_height); // e.g., = 2
- int roi_bin_grid_w =
- (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
- // We do average (integral) pooling inside a bin
- // When the grid is empty, output zeros.
- const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
- T output_val = 0.;
- for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
- {
- const T y = roi_start_h + ph * bin_size_h +
- static_cast<T>(iy + .5f) * bin_size_h /
- static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
- for (int ix = 0; ix < roi_bin_grid_w; ix++) {
- const T x = roi_start_w + pw * bin_size_w +
- static_cast<T>(ix + .5f) * bin_size_w /
- static_cast<T>(roi_bin_grid_w);
- T val = bilinear_interpolate(offset_input, height, width, y, x, index);
- output_val += val;
- }
- }
- output_val /= count;
- output[index] = output_val;
- }
- }
- template <typename T>
- __device__ void bilinear_interpolate_gradient(
- int height,
- int width,
- T y,
- T x,
- T& w1,
- T& w2,
- T& w3,
- T& w4,
- int& x_low,
- int& x_high,
- int& y_low,
- int& y_high,
- int index /* index for debug only*/) {
- // deal with cases that inverse elements are out of feature map boundary
- if (y < -1.0 || y > height || x < -1.0 || x > width) {
- // empty
- w1 = w2 = w3 = w4 = 0.;
- x_low = x_high = y_low = y_high = -1;
- return;
- }
- if (y <= 0)
- y = 0;
- if (x <= 0)
- x = 0;
- y_low = (int)y;
- x_low = (int)x;
- if (y_low >= height - 1) {
- y_high = y_low = height - 1;
- y = (T)y_low;
- } else {
- y_high = y_low + 1;
- }
- if (x_low >= width - 1) {
- x_high = x_low = width - 1;
- x = (T)x_low;
- } else {
- x_high = x_low + 1;
- }
- T ly = y - y_low;
- T lx = x - x_low;
- T hy = 1. - ly, hx = 1. - lx;
- // reference in forward
- // T v1 = input[y_low * width + x_low];
- // T v2 = input[y_low * width + x_high];
- // T v3 = input[y_high * width + x_low];
- // T v4 = input[y_high * width + x_high];
- // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
- }
- template <typename T>
- __global__ void roi_align_backward_kernel_impl(
- int nthreads,
- const T* grad_output,
- const T spatial_scale,
- int channels,
- int height,
- int width,
- int pooled_height,
- int pooled_width,
- int sampling_ratio,
- bool aligned,
- T* grad_input,
- const T* rois,
- int n_stride,
- int c_stride,
- int h_stride,
- int w_stride,
- const int memory_span) {
- CUDA_1D_KERNEL_LOOP(index, nthreads) {
- // (n, c, ph, pw) is an element in the pooled output
- int pw = index % pooled_width;
- int ph = (index / pooled_width) % pooled_height;
- int c = (index / pooled_width / pooled_height) % channels;
- int n = index / pooled_width / pooled_height / channels;
- const T* offset_rois = rois + n * 5;
- int roi_batch_ind = offset_rois[0];
- // Do not using rounding; this implementation detail is critical
- T offset = aligned ? (T)0.5 : (T)0.0;
- T roi_start_w = offset_rois[1] * spatial_scale - offset;
- T roi_start_h = offset_rois[2] * spatial_scale - offset;
- T roi_end_w = offset_rois[3] * spatial_scale - offset;
- T roi_end_h = offset_rois[4] * spatial_scale - offset;
- T roi_width = roi_end_w - roi_start_w;
- T roi_height = roi_end_h - roi_start_h;
- if (!aligned) {
- // Force malformed ROIs to be 1x1
- roi_width = max(roi_width, (T)1.);
- roi_height = max(roi_height, (T)1.);
- }
- T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
- T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
- // We need to index the gradient using the tensor strides to access the
- // correct values.
- const int output_offset = n * n_stride + c * c_stride;
- const T* offset_grad_output = grad_output + output_offset;
- const T grad_output_this_bin =
- offset_grad_output[ph * h_stride + pw * w_stride];
- // We use roi_bin_grid to sample the grid and mimic integral
- int roi_bin_grid_h = (sampling_ratio > 0)
- ? sampling_ratio
- : ceil(roi_height / pooled_height); // e.g., = 2
- int roi_bin_grid_w =
- (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
- // We do average (integral) pooling inside a bin
- const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
- const int input_offset = (roi_batch_ind * channels + c) * height * width;
- for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
- {
- const T y = roi_start_h + ph * bin_size_h +
- static_cast<T>(iy + .5f) * bin_size_h /
- static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
- for (int ix = 0; ix < roi_bin_grid_w; ix++) {
- const T x = roi_start_w + pw * bin_size_w +
- static_cast<T>(ix + .5f) * bin_size_w /
- static_cast<T>(roi_bin_grid_w);
- T w1, w2, w3, w4;
- int x_low, x_high, y_low, y_high;
- bilinear_interpolate_gradient(
- height,
- width,
- y,
- x,
- w1,
- w2,
- w3,
- w4,
- x_low,
- x_high,
- y_low,
- y_high,
- index);
- T g1 = grad_output_this_bin * w1 / count;
- T g2 = grad_output_this_bin * w2 / count;
- T g3 = grad_output_this_bin * w3 / count;
- T g4 = grad_output_this_bin * w4 / count;
- if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
- at::native::fastAtomicAdd(
- grad_input,
- input_offset + y_low * width + x_low,
- memory_span,
- static_cast<T>(g1),
- true);
- at::native::fastAtomicAdd(
- grad_input,
- input_offset + y_low * width + x_high,
- memory_span,
- static_cast<T>(g2),
- true);
- at::native::fastAtomicAdd(
- grad_input,
- input_offset + y_high * width + x_low,
- memory_span,
- static_cast<T>(g3),
- true);
- at::native::fastAtomicAdd(
- grad_input,
- input_offset + y_high * width + x_high,
- memory_span,
- static_cast<T>(g4),
- true);
- } // if
- } // ix
- } // iy
- } // CUDA_1D_KERNEL_LOOP
- }
- at::Tensor roi_align_forward_kernel(
- const at::Tensor& input,
- const at::Tensor& rois,
- double spatial_scale,
- int64_t pooled_height,
- int64_t pooled_width,
- int64_t sampling_ratio,
- bool aligned) {
- TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
- TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
- TORCH_CHECK(rois.size(1) == 5, "rois must have shape as Tensor[K, 5]");
- at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
- at::CheckedFrom c = "roi_align_forward_kernel";
- at::checkAllSameGPU(c, {input_t, rois_t});
- at::checkAllSameType(c, {input_t, rois_t});
- at::cuda::CUDAGuard device_guard(input.device());
- auto num_rois = rois.size(0);
- auto channels = input.size(1);
- auto height = input.size(2);
- auto width = input.size(3);
- at::Tensor output = at::zeros(
- {num_rois, channels, pooled_height, pooled_width}, input.options());
- auto output_size = num_rois * pooled_height * pooled_width * channels;
- cudaStream_t stream = at::cuda::getCurrentCUDAStream();
- dim3 grid(std::min(
- ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
- static_cast<int64_t>(4096)));
- dim3 block(512);
- if (output.numel() == 0) {
- AT_CUDA_CHECK(cudaGetLastError());
- return output;
- }
- auto input_ = input.contiguous(), rois_ = rois.contiguous();
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(
- input.scalar_type(), "roi_align_forward_kernel", [&] {
- roi_align_forward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
- output_size,
- input_.data_ptr<scalar_t>(),
- spatial_scale,
- channels,
- height,
- width,
- pooled_height,
- pooled_width,
- sampling_ratio,
- aligned,
- rois_.data_ptr<scalar_t>(),
- output.data_ptr<scalar_t>());
- });
- AT_CUDA_CHECK(cudaGetLastError());
- return output;
- }
- at::Tensor roi_align_backward_kernel(
- const at::Tensor& grad,
- const at::Tensor& rois,
- double spatial_scale,
- int64_t pooled_height,
- int64_t pooled_width,
- int64_t batch_size,
- int64_t channels,
- int64_t height,
- int64_t width,
- int64_t sampling_ratio,
- bool aligned) {
- TORCH_CHECK(grad.is_cuda(), "grad must be a CUDA tensor");
- TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
- at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
- at::CheckedFrom c = "roi_align_backward_kernel";
- at::checkAllSameGPU(c, {grad_t, rois_t});
- at::checkAllSameType(c, {grad_t, rois_t});
- at::cuda::CUDAGuard device_guard(grad.device());
- at::Tensor grad_input =
- at::zeros({batch_size, channels, height, width}, grad.options());
- cudaStream_t stream = at::cuda::getCurrentCUDAStream();
- dim3 grid(std::min(
- ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
- static_cast<int64_t>(4096)));
- dim3 block(512);
- // handle possibly empty gradients
- if (grad.numel() == 0) {
- AT_CUDA_CHECK(cudaGetLastError());
- return grad_input;
- }
- int n_stride = grad.stride(0);
- int c_stride = grad.stride(1);
- int h_stride = grad.stride(2);
- int w_stride = grad.stride(3);
- at::globalContext().alertNotDeterministic("roi_align_backward_kernel");
- auto rois_ = rois.contiguous();
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(
- grad.scalar_type(), "roi_align_backward_kernel", [&] {
- roi_align_backward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
- grad.numel(),
- grad.data_ptr<scalar_t>(),
- spatial_scale,
- channels,
- height,
- width,
- pooled_height,
- pooled_width,
- sampling_ratio,
- aligned,
- grad_input.data_ptr<scalar_t>(),
- rois_.data_ptr<scalar_t>(),
- n_stride,
- c_stride,
- h_stride,
- w_stride,
- grad_input.numel());
- });
- AT_CUDA_CHECK(cudaGetLastError());
- return grad_input;
- }
- } // namespace
- TORCH_LIBRARY_IMPL(torchvision, CUDA, m) {
- m.impl(
- TORCH_SELECTIVE_NAME("torchvision::roi_align"),
- TORCH_FN(roi_align_forward_kernel));
- m.impl(
- TORCH_SELECTIVE_NAME("torchvision::_roi_align_backward"),
- TORCH_FN(roi_align_backward_kernel));
- }
- } // namespace ops
- } // namespace vision
|