123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- #include "../roi_align.h"
- #include <torch/autograd.h>
- #include <torch/types.h>
- namespace vision {
- namespace ops {
- namespace {
- class ROIAlignFunction : public torch::autograd::Function<ROIAlignFunction> {
- public:
- static torch::autograd::variable_list forward(
- torch::autograd::AutogradContext* ctx,
- const torch::autograd::Variable& input,
- const torch::autograd::Variable& rois,
- double spatial_scale,
- c10::SymInt pooled_height,
- c10::SymInt pooled_width,
- int64_t sampling_ratio,
- bool aligned) {
- ctx->saved_data["spatial_scale"] = spatial_scale;
- ctx->saved_data["pooled_height"] = pooled_height;
- ctx->saved_data["pooled_width"] = pooled_width;
- ctx->saved_data["sampling_ratio"] = sampling_ratio;
- ctx->saved_data["aligned"] = aligned;
- ctx->saved_data["input_shape"] = input.sym_sizes();
- ctx->save_for_backward({rois});
- at::AutoDispatchBelowADInplaceOrView g;
- auto result = roi_align_symint(
- input,
- rois,
- spatial_scale,
- pooled_height,
- pooled_width,
- sampling_ratio,
- aligned);
- return {result};
- }
- static torch::autograd::variable_list backward(
- torch::autograd::AutogradContext* ctx,
- const torch::autograd::variable_list& grad_output) {
- // Use data saved in forward
- auto saved = ctx->get_saved_variables();
- auto rois = saved[0];
- auto input_shape = ctx->saved_data["input_shape"].toList();
- auto grad_in = detail::_roi_align_backward_symint(
- grad_output[0],
- rois,
- ctx->saved_data["spatial_scale"].toDouble(),
- ctx->saved_data["pooled_height"].toSymInt(),
- ctx->saved_data["pooled_width"].toSymInt(),
- input_shape[0].get().toSymInt(),
- input_shape[1].get().toSymInt(),
- input_shape[2].get().toSymInt(),
- input_shape[3].get().toSymInt(),
- ctx->saved_data["sampling_ratio"].toInt(),
- ctx->saved_data["aligned"].toBool());
- return {
- grad_in,
- torch::autograd::Variable(),
- torch::autograd::Variable(),
- torch::autograd::Variable(),
- torch::autograd::Variable(),
- torch::autograd::Variable(),
- torch::autograd::Variable()};
- }
- };
- // TODO: There should be an easier way to do this
- class ROIAlignBackwardFunction
- : public torch::autograd::Function<ROIAlignBackwardFunction> {
- public:
- static torch::autograd::variable_list forward(
- torch::autograd::AutogradContext* ctx,
- const torch::autograd::Variable& grad,
- const torch::autograd::Variable& rois,
- double spatial_scale,
- c10::SymInt pooled_height,
- c10::SymInt pooled_width,
- c10::SymInt batch_size,
- c10::SymInt channels,
- c10::SymInt height,
- c10::SymInt width,
- int64_t sampling_ratio,
- bool aligned) {
- at::AutoDispatchBelowADInplaceOrView g;
- auto result = detail::_roi_align_backward_symint(
- grad,
- rois,
- spatial_scale,
- pooled_height,
- pooled_width,
- batch_size,
- channels,
- height,
- width,
- sampling_ratio,
- aligned);
- return {result};
- }
- static torch::autograd::variable_list backward(
- torch::autograd::AutogradContext* ctx,
- const torch::autograd::variable_list& grad_output) {
- TORCH_CHECK(0, "double backwards on roi_align not supported");
- }
- };
- at::Tensor roi_align_autograd(
- const at::Tensor& input,
- const at::Tensor& rois,
- double spatial_scale,
- c10::SymInt pooled_height,
- c10::SymInt pooled_width,
- int64_t sampling_ratio,
- bool aligned) {
- return ROIAlignFunction::apply(
- input,
- rois,
- spatial_scale,
- pooled_height,
- pooled_width,
- sampling_ratio,
- aligned)[0];
- }
- at::Tensor roi_align_backward_autograd(
- const at::Tensor& grad,
- const at::Tensor& rois,
- double spatial_scale,
- c10::SymInt pooled_height,
- c10::SymInt pooled_width,
- c10::SymInt batch_size,
- c10::SymInt channels,
- c10::SymInt height,
- c10::SymInt width,
- int64_t sampling_ratio,
- bool aligned) {
- return ROIAlignBackwardFunction::apply(
- grad,
- rois,
- spatial_scale,
- pooled_height,
- pooled_width,
- batch_size,
- channels,
- height,
- width,
- sampling_ratio,
- aligned)[0];
- }
- } // namespace
- TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
- m.impl(
- TORCH_SELECTIVE_NAME("torchvision::roi_align"),
- TORCH_FN(roi_align_autograd));
- m.impl(
- TORCH_SELECTIVE_NAME("torchvision::_roi_align_backward"),
- TORCH_FN(roi_align_backward_autograd));
- }
- } // namespace ops
- } // namespace vision
|