12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- #include <torch/script.h>
- #include <torch/torch.h>
- #include <torchvision/vision.h>
- #include <torchvision/ops/nms.h>
- int main() {
- torch::DeviceType device_type;
- device_type = torch::kCPU;
- torch::jit::script::Module module;
- try {
- std::cout << "Loading model\n";
- // Deserialize the ScriptModule from a file using torch::jit::load().
- module = torch::jit::load("fasterrcnn_resnet50_fpn.pt");
- std::cout << "Model loaded\n";
- } catch (const torch::Error& e) {
- std::cout << "error loading the model\n";
- return -1;
- } catch (const std::exception& e) {
- std::cout << "Other error: " << e.what() << "\n";
- return -1;
- }
- // TorchScript models require a List[IValue] as input
- std::vector<torch::jit::IValue> inputs;
- // Faster RCNN accepts a List[Tensor] as main input
- std::vector<torch::Tensor> images;
- images.push_back(torch::rand({3, 256, 275}));
- images.push_back(torch::rand({3, 256, 275}));
- inputs.push_back(images);
- auto output = module.forward(inputs);
- std::cout << "ok\n";
- std::cout << "output" << output << "\n";
- if (torch::cuda::is_available()) {
- // Move traced model to GPU
- module.to(torch::kCUDA);
- // Add GPU inputs
- images.clear();
- inputs.clear();
- torch::TensorOptions options = torch::TensorOptions{torch::kCUDA};
- images.push_back(torch::rand({3, 256, 275}, options));
- images.push_back(torch::rand({3, 256, 275}, options));
- inputs.push_back(images);
- auto output = module.forward(inputs);
- std::cout << "ok\n";
- std::cout << "output" << output << "\n";
- }
- return 0;
- }
|