12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import copy
- import pytest
- import torch
- from common_utils import assert_equal
- from torchvision.models.detection import _utils, backbone_utils
- from torchvision.models.detection.transform import GeneralizedRCNNTransform
- class TestModelsDetectionUtils:
- def test_balanced_positive_negative_sampler(self):
- sampler = _utils.BalancedPositiveNegativeSampler(4, 0.25)
- # keep all 6 negatives first, then add 3 positives, last two are ignore
- matched_idxs = [torch.tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1])]
- pos, neg = sampler(matched_idxs)
- # we know the number of elements that should be sampled for the positive (1)
- # and the negative (3), and their location. Let's make sure that they are
- # there
- assert pos[0].sum() == 1
- assert pos[0][6:9].sum() == 1
- assert neg[0].sum() == 3
- assert neg[0][0:6].sum() == 3
- def test_box_linear_coder(self):
- box_coder = _utils.BoxLinearCoder(normalize_by_size=True)
- # Generate a random 10x4 boxes tensor, with coordinates < 50.
- boxes = torch.rand(10, 4) * 50
- boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression
- boxes[:, 2:] += boxes[:, :2]
- proposals = torch.tensor([0, 0, 101, 101] * 10).reshape(10, 4).float()
- rel_codes = box_coder.encode(boxes, proposals)
- pred_boxes = box_coder.decode(rel_codes, boxes)
- torch.allclose(proposals, pred_boxes)
- @pytest.mark.parametrize("train_layers, exp_froz_params", [(0, 53), (1, 43), (2, 24), (3, 11), (4, 1), (5, 0)])
- def test_resnet_fpn_backbone_frozen_layers(self, train_layers, exp_froz_params):
- # we know how many initial layers and parameters of the network should
- # be frozen for each trainable_backbone_layers parameter value
- # i.e. all 53 params are frozen if trainable_backbone_layers=0
- # ad first 24 params are frozen if trainable_backbone_layers=2
- model = backbone_utils.resnet_fpn_backbone("resnet50", weights=None, trainable_layers=train_layers)
- # boolean list that is true if the param at that index is frozen
- is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()]
- # check that expected initial number of layers are frozen
- assert all(is_frozen[:exp_froz_params])
- def test_validate_resnet_inputs_detection(self):
- # default number of backbone layers to train
- ret = backbone_utils._validate_trainable_layers(
- is_trained=True, trainable_backbone_layers=None, max_value=5, default_value=3
- )
- assert ret == 3
- # can't go beyond 5
- with pytest.raises(ValueError, match=r"Trainable backbone layers should be in the range"):
- ret = backbone_utils._validate_trainable_layers(
- is_trained=True, trainable_backbone_layers=6, max_value=5, default_value=3
- )
- # if not trained, should use all trainable layers and warn
- with pytest.warns(UserWarning):
- ret = backbone_utils._validate_trainable_layers(
- is_trained=False, trainable_backbone_layers=0, max_value=5, default_value=3
- )
- assert ret == 5
- def test_transform_copy_targets(self):
- transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
- image = [torch.rand(3, 200, 300), torch.rand(3, 200, 200)]
- targets = [{"boxes": torch.rand(3, 4)}, {"boxes": torch.rand(2, 4)}]
- targets_copy = copy.deepcopy(targets)
- out = transform(image, targets) # noqa: F841
- assert_equal(targets[0]["boxes"], targets_copy[0]["boxes"])
- assert_equal(targets[1]["boxes"], targets_copy[1]["boxes"])
- def test_not_float_normalize(self):
- transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
- image = [torch.randint(0, 255, (3, 200, 300), dtype=torch.uint8)]
- targets = [{"boxes": torch.rand(3, 4)}]
- with pytest.raises(TypeError):
- out = transform(image, targets) # noqa: F841
- if __name__ == "__main__":
- pytest.main([__file__])
|