utils.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. import datetime
  2. import errno
  3. import os
  4. import time
  5. from collections import defaultdict, deque
  6. import torch
  7. import torch.distributed as dist
  8. class SmoothedValue:
  9. """Track a series of values and provide access to smoothed values over a
  10. window or the global series average.
  11. """
  12. def __init__(self, window_size=20, fmt=None):
  13. if fmt is None:
  14. fmt = "{median:.4f} ({global_avg:.4f})"
  15. self.deque = deque(maxlen=window_size)
  16. self.total = 0.0
  17. self.count = 0
  18. self.fmt = fmt
  19. def update(self, value, n=1):
  20. self.deque.append(value)
  21. self.count += n
  22. self.total += value * n
  23. def synchronize_between_processes(self):
  24. """
  25. Warning: does not synchronize the deque!
  26. """
  27. t = reduce_across_processes([self.count, self.total])
  28. t = t.tolist()
  29. self.count = int(t[0])
  30. self.total = t[1]
  31. @property
  32. def median(self):
  33. d = torch.tensor(list(self.deque))
  34. return d.median().item()
  35. @property
  36. def avg(self):
  37. d = torch.tensor(list(self.deque), dtype=torch.float32)
  38. return d.mean().item()
  39. @property
  40. def global_avg(self):
  41. return self.total / self.count
  42. @property
  43. def max(self):
  44. return max(self.deque)
  45. @property
  46. def value(self):
  47. return self.deque[-1]
  48. def __str__(self):
  49. return self.fmt.format(
  50. median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
  51. )
  52. class MetricLogger:
  53. def __init__(self, delimiter="\t"):
  54. self.meters = defaultdict(SmoothedValue)
  55. self.delimiter = delimiter
  56. def update(self, **kwargs):
  57. for k, v in kwargs.items():
  58. if isinstance(v, torch.Tensor):
  59. v = v.item()
  60. if not isinstance(v, (float, int)):
  61. raise TypeError(
  62. f"This method expects the value of the input arguments to be of type float or int, instead got {type(v)}"
  63. )
  64. self.meters[k].update(v)
  65. def __getattr__(self, attr):
  66. if attr in self.meters:
  67. return self.meters[attr]
  68. if attr in self.__dict__:
  69. return self.__dict__[attr]
  70. raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
  71. def __str__(self):
  72. loss_str = []
  73. for name, meter in self.meters.items():
  74. loss_str.append(f"{name}: {str(meter)}")
  75. return self.delimiter.join(loss_str)
  76. def synchronize_between_processes(self):
  77. for meter in self.meters.values():
  78. meter.synchronize_between_processes()
  79. def add_meter(self, name, meter):
  80. self.meters[name] = meter
  81. def log_every(self, iterable, print_freq, header=None):
  82. i = 0
  83. if not header:
  84. header = ""
  85. start_time = time.time()
  86. end = time.time()
  87. iter_time = SmoothedValue(fmt="{avg:.4f}")
  88. data_time = SmoothedValue(fmt="{avg:.4f}")
  89. space_fmt = ":" + str(len(str(len(iterable)))) + "d"
  90. if torch.cuda.is_available():
  91. log_msg = self.delimiter.join(
  92. [
  93. header,
  94. "[{0" + space_fmt + "}/{1}]",
  95. "eta: {eta}",
  96. "{meters}",
  97. "time: {time}",
  98. "data: {data}",
  99. "max mem: {memory:.0f}",
  100. ]
  101. )
  102. else:
  103. log_msg = self.delimiter.join(
  104. [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
  105. )
  106. MB = 1024.0 * 1024.0
  107. for obj in iterable:
  108. data_time.update(time.time() - end)
  109. yield obj
  110. iter_time.update(time.time() - end)
  111. if i % print_freq == 0:
  112. eta_seconds = iter_time.global_avg * (len(iterable) - i)
  113. eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
  114. if torch.cuda.is_available():
  115. print(
  116. log_msg.format(
  117. i,
  118. len(iterable),
  119. eta=eta_string,
  120. meters=str(self),
  121. time=str(iter_time),
  122. data=str(data_time),
  123. memory=torch.cuda.max_memory_allocated() / MB,
  124. )
  125. )
  126. else:
  127. print(
  128. log_msg.format(
  129. i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
  130. )
  131. )
  132. i += 1
  133. end = time.time()
  134. total_time = time.time() - start_time
  135. total_time_str = str(datetime.timedelta(seconds=int(total_time)))
  136. print(f"{header} Total time: {total_time_str}")
  137. def accuracy(output, target, topk=(1,)):
  138. """Computes the accuracy over the k top predictions for the specified values of k"""
  139. with torch.inference_mode():
  140. maxk = max(topk)
  141. batch_size = target.size(0)
  142. _, pred = output.topk(maxk, 1, True, True)
  143. pred = pred.t()
  144. correct = pred.eq(target[None])
  145. res = []
  146. for k in topk:
  147. correct_k = correct[:k].flatten().sum(dtype=torch.float32)
  148. res.append(correct_k * (100.0 / batch_size))
  149. return res
  150. def mkdir(path):
  151. try:
  152. os.makedirs(path)
  153. except OSError as e:
  154. if e.errno != errno.EEXIST:
  155. raise
  156. def setup_for_distributed(is_master):
  157. """
  158. This function disables printing when not in master process
  159. """
  160. import builtins as __builtin__
  161. builtin_print = __builtin__.print
  162. def print(*args, **kwargs):
  163. force = kwargs.pop("force", False)
  164. if is_master or force:
  165. builtin_print(*args, **kwargs)
  166. __builtin__.print = print
  167. def is_dist_avail_and_initialized():
  168. if not dist.is_available():
  169. return False
  170. if not dist.is_initialized():
  171. return False
  172. return True
  173. def get_world_size():
  174. if not is_dist_avail_and_initialized():
  175. return 1
  176. return dist.get_world_size()
  177. def get_rank():
  178. if not is_dist_avail_and_initialized():
  179. return 0
  180. return dist.get_rank()
  181. def is_main_process():
  182. return get_rank() == 0
  183. def save_on_master(*args, **kwargs):
  184. if is_main_process():
  185. torch.save(*args, **kwargs)
  186. def init_distributed_mode(args):
  187. if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
  188. args.rank = int(os.environ["RANK"])
  189. args.world_size = int(os.environ["WORLD_SIZE"])
  190. args.gpu = int(os.environ["LOCAL_RANK"])
  191. elif "SLURM_PROCID" in os.environ:
  192. args.rank = int(os.environ["SLURM_PROCID"])
  193. args.gpu = args.rank % torch.cuda.device_count()
  194. elif hasattr(args, "rank"):
  195. pass
  196. else:
  197. print("Not using distributed mode")
  198. args.distributed = False
  199. return
  200. args.distributed = True
  201. torch.cuda.set_device(args.gpu)
  202. args.dist_backend = "nccl"
  203. print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
  204. torch.distributed.init_process_group(
  205. backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
  206. )
  207. torch.distributed.barrier()
  208. setup_for_distributed(args.rank == 0)
  209. def reduce_across_processes(val, op=dist.ReduceOp.SUM):
  210. if not is_dist_avail_and_initialized():
  211. # nothing to sync, but we still convert to tensor for consistency with the distributed case.
  212. return torch.tensor(val)
  213. t = torch.tensor(val, device="cuda")
  214. dist.barrier()
  215. dist.all_reduce(t, op=op)
  216. return t