123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- import datetime
- import errno
- import os
- import time
- from collections import defaultdict, deque
- import torch
- import torch.distributed as dist
- class SmoothedValue:
- """Track a series of values and provide access to smoothed values over a
- window or the global series average.
- """
- def __init__(self, window_size=20, fmt=None):
- if fmt is None:
- fmt = "{median:.4f} ({global_avg:.4f})"
- self.deque = deque(maxlen=window_size)
- self.total = 0.0
- self.count = 0
- self.fmt = fmt
- def update(self, value, n=1):
- self.deque.append(value)
- self.count += n
- self.total += value * n
- def synchronize_between_processes(self):
- """
- Warning: does not synchronize the deque!
- """
- t = reduce_across_processes([self.count, self.total])
- t = t.tolist()
- self.count = int(t[0])
- self.total = t[1]
- @property
- def median(self):
- d = torch.tensor(list(self.deque))
- return d.median().item()
- @property
- def avg(self):
- d = torch.tensor(list(self.deque), dtype=torch.float32)
- return d.mean().item()
- @property
- def global_avg(self):
- return self.total / self.count
- @property
- def max(self):
- return max(self.deque)
- @property
- def value(self):
- return self.deque[-1]
- def __str__(self):
- return self.fmt.format(
- median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
- )
- class ConfusionMatrix:
- def __init__(self, num_classes):
- self.num_classes = num_classes
- self.mat = None
- def update(self, a, b):
- n = self.num_classes
- if self.mat is None:
- self.mat = torch.zeros((n, n), dtype=torch.int64, device=a.device)
- with torch.inference_mode():
- k = (a >= 0) & (a < n)
- inds = n * a[k].to(torch.int64) + b[k]
- self.mat += torch.bincount(inds, minlength=n**2).reshape(n, n)
- def reset(self):
- self.mat.zero_()
- def compute(self):
- h = self.mat.float()
- acc_global = torch.diag(h).sum() / h.sum()
- acc = torch.diag(h) / h.sum(1)
- iu = torch.diag(h) / (h.sum(1) + h.sum(0) - torch.diag(h))
- return acc_global, acc, iu
- def reduce_from_all_processes(self):
- reduce_across_processes(self.mat)
- def __str__(self):
- acc_global, acc, iu = self.compute()
- return ("global correct: {:.1f}\naverage row correct: {}\nIoU: {}\nmean IoU: {:.1f}").format(
- acc_global.item() * 100,
- [f"{i:.1f}" for i in (acc * 100).tolist()],
- [f"{i:.1f}" for i in (iu * 100).tolist()],
- iu.mean().item() * 100,
- )
- class MetricLogger:
- def __init__(self, delimiter="\t"):
- self.meters = defaultdict(SmoothedValue)
- self.delimiter = delimiter
- def update(self, **kwargs):
- for k, v in kwargs.items():
- if isinstance(v, torch.Tensor):
- v = v.item()
- if not isinstance(v, (float, int)):
- raise TypeError(
- f"This method expects the value of the input arguments to be of type float or int, instead got {type(v)}"
- )
- self.meters[k].update(v)
- def __getattr__(self, attr):
- if attr in self.meters:
- return self.meters[attr]
- if attr in self.__dict__:
- return self.__dict__[attr]
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
- def __str__(self):
- loss_str = []
- for name, meter in self.meters.items():
- loss_str.append(f"{name}: {str(meter)}")
- return self.delimiter.join(loss_str)
- def synchronize_between_processes(self):
- for meter in self.meters.values():
- meter.synchronize_between_processes()
- def add_meter(self, name, meter):
- self.meters[name] = meter
- def log_every(self, iterable, print_freq, header=None):
- i = 0
- if not header:
- header = ""
- start_time = time.time()
- end = time.time()
- iter_time = SmoothedValue(fmt="{avg:.4f}")
- data_time = SmoothedValue(fmt="{avg:.4f}")
- space_fmt = ":" + str(len(str(len(iterable)))) + "d"
- if torch.cuda.is_available():
- log_msg = self.delimiter.join(
- [
- header,
- "[{0" + space_fmt + "}/{1}]",
- "eta: {eta}",
- "{meters}",
- "time: {time}",
- "data: {data}",
- "max mem: {memory:.0f}",
- ]
- )
- else:
- log_msg = self.delimiter.join(
- [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
- )
- MB = 1024.0 * 1024.0
- for obj in iterable:
- data_time.update(time.time() - end)
- yield obj
- iter_time.update(time.time() - end)
- if i % print_freq == 0:
- eta_seconds = iter_time.global_avg * (len(iterable) - i)
- eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
- if torch.cuda.is_available():
- print(
- log_msg.format(
- i,
- len(iterable),
- eta=eta_string,
- meters=str(self),
- time=str(iter_time),
- data=str(data_time),
- memory=torch.cuda.max_memory_allocated() / MB,
- )
- )
- else:
- print(
- log_msg.format(
- i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
- )
- )
- i += 1
- end = time.time()
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print(f"{header} Total time: {total_time_str}")
- def cat_list(images, fill_value=0):
- max_size = tuple(max(s) for s in zip(*[img.shape for img in images]))
- batch_shape = (len(images),) + max_size
- batched_imgs = images[0].new(*batch_shape).fill_(fill_value)
- for img, pad_img in zip(images, batched_imgs):
- pad_img[..., : img.shape[-2], : img.shape[-1]].copy_(img)
- return batched_imgs
- def collate_fn(batch):
- images, targets = list(zip(*batch))
- batched_imgs = cat_list(images, fill_value=0)
- batched_targets = cat_list(targets, fill_value=255)
- return batched_imgs, batched_targets
- def mkdir(path):
- try:
- os.makedirs(path)
- except OSError as e:
- if e.errno != errno.EEXIST:
- raise
- def setup_for_distributed(is_master):
- """
- This function disables printing when not in master process
- """
- import builtins as __builtin__
- builtin_print = __builtin__.print
- def print(*args, **kwargs):
- force = kwargs.pop("force", False)
- if is_master or force:
- builtin_print(*args, **kwargs)
- __builtin__.print = print
- def is_dist_avail_and_initialized():
- if not dist.is_available():
- return False
- if not dist.is_initialized():
- return False
- return True
- def get_world_size():
- if not is_dist_avail_and_initialized():
- return 1
- return dist.get_world_size()
- def get_rank():
- if not is_dist_avail_and_initialized():
- return 0
- return dist.get_rank()
- def is_main_process():
- return get_rank() == 0
- def save_on_master(*args, **kwargs):
- if is_main_process():
- torch.save(*args, **kwargs)
- def init_distributed_mode(args):
- if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
- args.rank = int(os.environ["RANK"])
- args.world_size = int(os.environ["WORLD_SIZE"])
- args.gpu = int(os.environ["LOCAL_RANK"])
- # elif "SLURM_PROCID" in os.environ:
- # args.rank = int(os.environ["SLURM_PROCID"])
- # args.gpu = args.rank % torch.cuda.device_count()
- elif hasattr(args, "rank"):
- pass
- else:
- print("Not using distributed mode")
- args.distributed = False
- return
- args.distributed = True
- torch.cuda.set_device(args.gpu)
- args.dist_backend = "nccl"
- print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
- torch.distributed.init_process_group(
- backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
- )
- torch.distributed.barrier()
- setup_for_distributed(args.rank == 0)
- def reduce_across_processes(val):
- if not is_dist_avail_and_initialized():
- # nothing to sync, but we still convert to tensor for consistency with the distributed case.
- return torch.tensor(val)
- t = torch.tensor(val, device="cuda")
- dist.barrier()
- dist.all_reduce(t)
- return t
|