123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- import torch
- import torchvision.transforms as T
- import torchvision.transforms.functional as F
- class ValidateModelInput(torch.nn.Module):
- # Pass-through transform that checks the shape and dtypes to make sure the model gets what it expects
- def forward(self, img1, img2, flow, valid_flow_mask):
- if not all(isinstance(arg, torch.Tensor) for arg in (img1, img2, flow, valid_flow_mask) if arg is not None):
- raise TypeError("This method expects all input arguments to be of type torch.Tensor.")
- if not all(arg.dtype == torch.float32 for arg in (img1, img2, flow) if arg is not None):
- raise TypeError("This method expects the tensors img1, img2 and flow of be of dtype torch.float32.")
- if img1.shape != img2.shape:
- raise ValueError("img1 and img2 should have the same shape.")
- h, w = img1.shape[-2:]
- if flow is not None and flow.shape != (2, h, w):
- raise ValueError(f"flow.shape should be (2, {h}, {w}) instead of {flow.shape}")
- if valid_flow_mask is not None:
- if valid_flow_mask.shape != (h, w):
- raise ValueError(f"valid_flow_mask.shape should be ({h}, {w}) instead of {valid_flow_mask.shape}")
- if valid_flow_mask.dtype != torch.bool:
- raise TypeError("valid_flow_mask should be of dtype torch.bool instead of {valid_flow_mask.dtype}")
- return img1, img2, flow, valid_flow_mask
- class MakeValidFlowMask(torch.nn.Module):
- # This transform generates a valid_flow_mask if it doesn't exist.
- # The flow is considered valid if ||flow||_inf < threshold
- # This is a noop for Kitti and HD1K which already come with a built-in flow mask.
- def __init__(self, threshold=1000):
- super().__init__()
- self.threshold = threshold
- def forward(self, img1, img2, flow, valid_flow_mask):
- if flow is not None and valid_flow_mask is None:
- valid_flow_mask = (flow.abs() < self.threshold).all(axis=0)
- return img1, img2, flow, valid_flow_mask
- class ConvertImageDtype(torch.nn.Module):
- def __init__(self, dtype):
- super().__init__()
- self.dtype = dtype
- def forward(self, img1, img2, flow, valid_flow_mask):
- img1 = F.convert_image_dtype(img1, dtype=self.dtype)
- img2 = F.convert_image_dtype(img2, dtype=self.dtype)
- img1 = img1.contiguous()
- img2 = img2.contiguous()
- return img1, img2, flow, valid_flow_mask
- class Normalize(torch.nn.Module):
- def __init__(self, mean, std):
- super().__init__()
- self.mean = mean
- self.std = std
- def forward(self, img1, img2, flow, valid_flow_mask):
- img1 = F.normalize(img1, mean=self.mean, std=self.std)
- img2 = F.normalize(img2, mean=self.mean, std=self.std)
- return img1, img2, flow, valid_flow_mask
- class PILToTensor(torch.nn.Module):
- # Converts all inputs to tensors
- # Technically the flow and the valid mask are numpy arrays, not PIL images, but we keep that naming
- # for consistency with the rest, e.g. the segmentation reference.
- def forward(self, img1, img2, flow, valid_flow_mask):
- img1 = F.pil_to_tensor(img1)
- img2 = F.pil_to_tensor(img2)
- if flow is not None:
- flow = torch.from_numpy(flow)
- if valid_flow_mask is not None:
- valid_flow_mask = torch.from_numpy(valid_flow_mask)
- return img1, img2, flow, valid_flow_mask
- class AsymmetricColorJitter(T.ColorJitter):
- # p determines the proba of doing asymmertric vs symmetric color jittering
- def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, p=0.2):
- super().__init__(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
- self.p = p
- def forward(self, img1, img2, flow, valid_flow_mask):
- if torch.rand(1) < self.p:
- # asymmetric: different transform for img1 and img2
- img1 = super().forward(img1)
- img2 = super().forward(img2)
- else:
- # symmetric: same transform for img1 and img2
- batch = torch.stack([img1, img2])
- batch = super().forward(batch)
- img1, img2 = batch[0], batch[1]
- return img1, img2, flow, valid_flow_mask
- class RandomErasing(T.RandomErasing):
- # This only erases img2, and with an extra max_erase param
- # This max_erase is needed because in the RAFT training ref does:
- # 0 erasing with .5 proba
- # 1 erase with .25 proba
- # 2 erase with .25 proba
- # and there's no accurate way to achieve this otherwise.
- def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False, max_erase=1):
- super().__init__(p=p, scale=scale, ratio=ratio, value=value, inplace=inplace)
- self.max_erase = max_erase
- if self.max_erase <= 0:
- raise ValueError("max_raise should be greater than 0")
- def forward(self, img1, img2, flow, valid_flow_mask):
- if torch.rand(1) > self.p:
- return img1, img2, flow, valid_flow_mask
- for _ in range(torch.randint(self.max_erase, size=(1,)).item()):
- x, y, h, w, v = self.get_params(img2, scale=self.scale, ratio=self.ratio, value=[self.value])
- img2 = F.erase(img2, x, y, h, w, v, self.inplace)
- return img1, img2, flow, valid_flow_mask
- class RandomHorizontalFlip(T.RandomHorizontalFlip):
- def forward(self, img1, img2, flow, valid_flow_mask):
- if torch.rand(1) > self.p:
- return img1, img2, flow, valid_flow_mask
- img1 = F.hflip(img1)
- img2 = F.hflip(img2)
- flow = F.hflip(flow) * torch.tensor([-1, 1])[:, None, None]
- if valid_flow_mask is not None:
- valid_flow_mask = F.hflip(valid_flow_mask)
- return img1, img2, flow, valid_flow_mask
- class RandomVerticalFlip(T.RandomVerticalFlip):
- def forward(self, img1, img2, flow, valid_flow_mask):
- if torch.rand(1) > self.p:
- return img1, img2, flow, valid_flow_mask
- img1 = F.vflip(img1)
- img2 = F.vflip(img2)
- flow = F.vflip(flow) * torch.tensor([1, -1])[:, None, None]
- if valid_flow_mask is not None:
- valid_flow_mask = F.vflip(valid_flow_mask)
- return img1, img2, flow, valid_flow_mask
- class RandomResizeAndCrop(torch.nn.Module):
- # This transform will resize the input with a given proba, and then crop it.
- # These are the reversed operations of the built-in RandomResizedCrop,
- # although the order of the operations doesn't matter too much: resizing a
- # crop would give the same result as cropping a resized image, up to
- # interpolation artifact at the borders of the output.
- #
- # The reason we don't rely on RandomResizedCrop is because of a significant
- # difference in the parametrization of both transforms, in particular,
- # because of the way the random parameters are sampled in both transforms,
- # which leads to fairly different results (and different epe). For more details see
- # https://github.com/pytorch/vision/pull/5026/files#r762932579
- def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, stretch_prob=0.8):
- super().__init__()
- self.crop_size = crop_size
- self.min_scale = min_scale
- self.max_scale = max_scale
- self.stretch_prob = stretch_prob
- self.resize_prob = 0.8
- self.max_stretch = 0.2
- def forward(self, img1, img2, flow, valid_flow_mask):
- # randomly sample scale
- h, w = img1.shape[-2:]
- # Note: in original code, they use + 1 instead of + 8 for sparse datasets (e.g. Kitti)
- # It shouldn't matter much
- min_scale = max((self.crop_size[0] + 8) / h, (self.crop_size[1] + 8) / w)
- scale = 2 ** torch.empty(1, dtype=torch.float32).uniform_(self.min_scale, self.max_scale).item()
- scale_x = scale
- scale_y = scale
- if torch.rand(1) < self.stretch_prob:
- scale_x *= 2 ** torch.empty(1, dtype=torch.float32).uniform_(-self.max_stretch, self.max_stretch).item()
- scale_y *= 2 ** torch.empty(1, dtype=torch.float32).uniform_(-self.max_stretch, self.max_stretch).item()
- scale_x = max(scale_x, min_scale)
- scale_y = max(scale_y, min_scale)
- new_h, new_w = round(h * scale_y), round(w * scale_x)
- if torch.rand(1).item() < self.resize_prob:
- # rescale the images
- # We hard-code antialias=False to preserve results after we changed
- # its default from None to True (see
- # https://github.com/pytorch/vision/pull/7160)
- # TODO: we could re-train the OF models with antialias=True?
- img1 = F.resize(img1, size=(new_h, new_w), antialias=False)
- img2 = F.resize(img2, size=(new_h, new_w), antialias=False)
- if valid_flow_mask is None:
- flow = F.resize(flow, size=(new_h, new_w))
- flow = flow * torch.tensor([scale_x, scale_y])[:, None, None]
- else:
- flow, valid_flow_mask = self._resize_sparse_flow(
- flow, valid_flow_mask, scale_x=scale_x, scale_y=scale_y
- )
- # Note: For sparse datasets (Kitti), the original code uses a "margin"
- # See e.g. https://github.com/princeton-vl/RAFT/blob/master/core/utils/augmentor.py#L220:L220
- # We don't, not sure if it matters much
- y0 = torch.randint(0, img1.shape[1] - self.crop_size[0], size=(1,)).item()
- x0 = torch.randint(0, img1.shape[2] - self.crop_size[1], size=(1,)).item()
- img1 = F.crop(img1, y0, x0, self.crop_size[0], self.crop_size[1])
- img2 = F.crop(img2, y0, x0, self.crop_size[0], self.crop_size[1])
- flow = F.crop(flow, y0, x0, self.crop_size[0], self.crop_size[1])
- if valid_flow_mask is not None:
- valid_flow_mask = F.crop(valid_flow_mask, y0, x0, self.crop_size[0], self.crop_size[1])
- return img1, img2, flow, valid_flow_mask
- def _resize_sparse_flow(self, flow, valid_flow_mask, scale_x=1.0, scale_y=1.0):
- # This resizes both the flow and the valid_flow_mask mask (which is assumed to be reasonably sparse)
- # There are as-many non-zero values in the original flow as in the resized flow (up to OOB)
- # So for example if scale_x = scale_y = 2, the sparsity of the output flow is multiplied by 4
- h, w = flow.shape[-2:]
- h_new = int(round(h * scale_y))
- w_new = int(round(w * scale_x))
- flow_new = torch.zeros(size=[2, h_new, w_new], dtype=flow.dtype)
- valid_new = torch.zeros(size=[h_new, w_new], dtype=valid_flow_mask.dtype)
- jj, ii = torch.meshgrid(torch.arange(w), torch.arange(h), indexing="xy")
- ii_valid, jj_valid = ii[valid_flow_mask], jj[valid_flow_mask]
- ii_valid_new = torch.round(ii_valid.to(float) * scale_y).to(torch.long)
- jj_valid_new = torch.round(jj_valid.to(float) * scale_x).to(torch.long)
- within_bounds_mask = (0 <= ii_valid_new) & (ii_valid_new < h_new) & (0 <= jj_valid_new) & (jj_valid_new < w_new)
- ii_valid = ii_valid[within_bounds_mask]
- jj_valid = jj_valid[within_bounds_mask]
- ii_valid_new = ii_valid_new[within_bounds_mask]
- jj_valid_new = jj_valid_new[within_bounds_mask]
- valid_flow_new = flow[:, ii_valid, jj_valid]
- valid_flow_new[0] *= scale_x
- valid_flow_new[1] *= scale_y
- flow_new[:, ii_valid_new, jj_valid_new] = valid_flow_new
- valid_new[ii_valid_new, jj_valid_new] = 1
- return flow_new, valid_new
- class Compose(torch.nn.Module):
- def __init__(self, transforms):
- super().__init__()
- self.transforms = transforms
- def forward(self, img1, img2, flow, valid_flow_mask):
- for t in self.transforms:
- img1, img2, flow, valid_flow_mask = t(img1, img2, flow, valid_flow_mask)
- return img1, img2, flow, valid_flow_mask
|