utils.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. import datetime
  2. import errno
  3. import os
  4. import time
  5. from collections import defaultdict, deque
  6. import torch
  7. import torch.distributed as dist
  8. class SmoothedValue:
  9. """Track a series of values and provide access to smoothed values over a
  10. window or the global series average.
  11. """
  12. def __init__(self, window_size=20, fmt=None):
  13. if fmt is None:
  14. fmt = "{median:.4f} ({global_avg:.4f})"
  15. self.deque = deque(maxlen=window_size)
  16. self.total = 0.0
  17. self.count = 0
  18. self.fmt = fmt
  19. def update(self, value, n=1):
  20. self.deque.append(value)
  21. self.count += n
  22. self.total += value * n
  23. def synchronize_between_processes(self):
  24. """
  25. Warning: does not synchronize the deque!
  26. """
  27. if not is_dist_avail_and_initialized():
  28. return
  29. t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
  30. dist.barrier()
  31. dist.all_reduce(t)
  32. t = t.tolist()
  33. self.count = int(t[0])
  34. self.total = t[1]
  35. @property
  36. def median(self):
  37. d = torch.tensor(list(self.deque))
  38. return d.median().item()
  39. @property
  40. def avg(self):
  41. d = torch.tensor(list(self.deque), dtype=torch.float32)
  42. return d.mean().item()
  43. @property
  44. def global_avg(self):
  45. return self.total / self.count
  46. @property
  47. def max(self):
  48. return max(self.deque)
  49. @property
  50. def value(self):
  51. return self.deque[-1]
  52. def __str__(self):
  53. return self.fmt.format(
  54. median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
  55. )
  56. def all_gather(data):
  57. """
  58. Run all_gather on arbitrary picklable data (not necessarily tensors)
  59. Args:
  60. data: any picklable object
  61. Returns:
  62. list[data]: list of data gathered from each rank
  63. """
  64. world_size = get_world_size()
  65. if world_size == 1:
  66. return [data]
  67. data_list = [None] * world_size
  68. dist.all_gather_object(data_list, data)
  69. return data_list
  70. def reduce_dict(input_dict, average=True):
  71. """
  72. Args:
  73. input_dict (dict): all the values will be reduced
  74. average (bool): whether to do average or sum
  75. Reduce the values in the dictionary from all processes so that all processes
  76. have the averaged results. Returns a dict with the same fields as
  77. input_dict, after reduction.
  78. """
  79. world_size = get_world_size()
  80. if world_size < 2:
  81. return input_dict
  82. with torch.inference_mode():
  83. names = []
  84. values = []
  85. # sort the keys so that they are consistent across processes
  86. for k in sorted(input_dict.keys()):
  87. names.append(k)
  88. values.append(input_dict[k])
  89. values = torch.stack(values, dim=0)
  90. dist.all_reduce(values)
  91. if average:
  92. values /= world_size
  93. reduced_dict = {k: v for k, v in zip(names, values)}
  94. return reduced_dict
  95. class MetricLogger:
  96. def __init__(self, delimiter="\t"):
  97. self.meters = defaultdict(SmoothedValue)
  98. self.delimiter = delimiter
  99. def update(self, **kwargs):
  100. for k, v in kwargs.items():
  101. if isinstance(v, torch.Tensor):
  102. v = v.item()
  103. assert isinstance(v, (float, int))
  104. self.meters[k].update(v)
  105. def __getattr__(self, attr):
  106. if attr in self.meters:
  107. return self.meters[attr]
  108. if attr in self.__dict__:
  109. return self.__dict__[attr]
  110. raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
  111. def __str__(self):
  112. loss_str = []
  113. for name, meter in self.meters.items():
  114. loss_str.append(f"{name}: {str(meter)}")
  115. return self.delimiter.join(loss_str)
  116. def synchronize_between_processes(self):
  117. for meter in self.meters.values():
  118. meter.synchronize_between_processes()
  119. def add_meter(self, name, meter):
  120. self.meters[name] = meter
  121. def log_every(self, iterable, print_freq, header=None):
  122. i = 0
  123. if not header:
  124. header = ""
  125. start_time = time.time()
  126. end = time.time()
  127. iter_time = SmoothedValue(fmt="{avg:.4f}")
  128. data_time = SmoothedValue(fmt="{avg:.4f}")
  129. space_fmt = ":" + str(len(str(len(iterable)))) + "d"
  130. if torch.cuda.is_available():
  131. log_msg = self.delimiter.join(
  132. [
  133. header,
  134. "[{0" + space_fmt + "}/{1}]",
  135. "eta: {eta}",
  136. "{meters}",
  137. "time: {time}",
  138. "data: {data}",
  139. "max mem: {memory:.0f}",
  140. ]
  141. )
  142. else:
  143. log_msg = self.delimiter.join(
  144. [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
  145. )
  146. MB = 1024.0 * 1024.0
  147. for obj in iterable:
  148. data_time.update(time.time() - end)
  149. yield obj
  150. iter_time.update(time.time() - end)
  151. if i % print_freq == 0 or i == len(iterable) - 1:
  152. eta_seconds = iter_time.global_avg * (len(iterable) - i)
  153. eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
  154. if torch.cuda.is_available():
  155. print(
  156. log_msg.format(
  157. i,
  158. len(iterable),
  159. eta=eta_string,
  160. meters=str(self),
  161. time=str(iter_time),
  162. data=str(data_time),
  163. memory=torch.cuda.max_memory_allocated() / MB,
  164. )
  165. )
  166. else:
  167. print(
  168. log_msg.format(
  169. i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
  170. )
  171. )
  172. i += 1
  173. end = time.time()
  174. total_time = time.time() - start_time
  175. total_time_str = str(datetime.timedelta(seconds=int(total_time)))
  176. print(f"{header} Total time: {total_time_str} ({total_time / len(iterable):.4f} s / it)")
  177. def collate_fn(batch):
  178. return tuple(zip(*batch))
  179. def mkdir(path):
  180. try:
  181. os.makedirs(path)
  182. except OSError as e:
  183. if e.errno != errno.EEXIST:
  184. raise
  185. def setup_for_distributed(is_master):
  186. """
  187. This function disables printing when not in master process
  188. """
  189. import builtins as __builtin__
  190. builtin_print = __builtin__.print
  191. def print(*args, **kwargs):
  192. force = kwargs.pop("force", False)
  193. if is_master or force:
  194. builtin_print(*args, **kwargs)
  195. __builtin__.print = print
  196. def is_dist_avail_and_initialized():
  197. if not dist.is_available():
  198. return False
  199. if not dist.is_initialized():
  200. return False
  201. return True
  202. def get_world_size():
  203. if not is_dist_avail_and_initialized():
  204. return 1
  205. return dist.get_world_size()
  206. def get_rank():
  207. if not is_dist_avail_and_initialized():
  208. return 0
  209. return dist.get_rank()
  210. def is_main_process():
  211. return get_rank() == 0
  212. def save_on_master(*args, **kwargs):
  213. if is_main_process():
  214. torch.save(*args, **kwargs)
  215. def init_distributed_mode(args):
  216. if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
  217. args.rank = int(os.environ["RANK"])
  218. args.world_size = int(os.environ["WORLD_SIZE"])
  219. args.gpu = int(os.environ["LOCAL_RANK"])
  220. elif "SLURM_PROCID" in os.environ:
  221. args.rank = int(os.environ["SLURM_PROCID"])
  222. args.gpu = args.rank % torch.cuda.device_count()
  223. else:
  224. print("Not using distributed mode")
  225. args.distributed = False
  226. return
  227. args.distributed = True
  228. torch.cuda.set_device(args.gpu)
  229. args.dist_backend = "nccl"
  230. print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
  231. torch.distributed.init_process_group(
  232. backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
  233. )
  234. torch.distributed.barrier()
  235. setup_for_distributed(args.rank == 0)