123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526 |
- import datetime
- import os
- import time
- import warnings
- import presets
- import torch
- import torch.utils.data
- import torchvision
- import torchvision.transforms
- import utils
- from sampler import RASampler
- from torch import nn
- from torch.utils.data.dataloader import default_collate
- from torchvision.transforms.functional import InterpolationMode
- from transforms import get_mixup_cutmix
- def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema=None, scaler=None):
- model.train()
- metric_logger = utils.MetricLogger(delimiter=" ")
- metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
- metric_logger.add_meter("img/s", utils.SmoothedValue(window_size=10, fmt="{value}"))
- header = f"Epoch: [{epoch}]"
- for i, (image, target) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
- start_time = time.time()
- image, target = image.to(device), target.to(device)
- with torch.cuda.amp.autocast(enabled=scaler is not None):
- output = model(image)
- loss = criterion(output, target)
- optimizer.zero_grad()
- if scaler is not None:
- scaler.scale(loss).backward()
- if args.clip_grad_norm is not None:
- # we should unscale the gradients of optimizer's assigned params if do gradient clipping
- scaler.unscale_(optimizer)
- nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad_norm)
- scaler.step(optimizer)
- scaler.update()
- else:
- loss.backward()
- if args.clip_grad_norm is not None:
- nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad_norm)
- optimizer.step()
- if model_ema and i % args.model_ema_steps == 0:
- model_ema.update_parameters(model)
- if epoch < args.lr_warmup_epochs:
- # Reset ema buffer to keep copying weights during warmup period
- model_ema.n_averaged.fill_(0)
- acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
- batch_size = image.shape[0]
- metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
- metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
- metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
- metric_logger.meters["img/s"].update(batch_size / (time.time() - start_time))
- def evaluate(model, criterion, data_loader, device, print_freq=100, log_suffix=""):
- model.eval()
- metric_logger = utils.MetricLogger(delimiter=" ")
- header = f"Test: {log_suffix}"
- num_processed_samples = 0
- with torch.inference_mode():
- for image, target in metric_logger.log_every(data_loader, print_freq, header):
- image = image.to(device, non_blocking=True)
- target = target.to(device, non_blocking=True)
- output = model(image)
- loss = criterion(output, target)
- acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
- # FIXME need to take into account that the datasets
- # could have been padded in distributed setup
- batch_size = image.shape[0]
- metric_logger.update(loss=loss.item())
- metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
- metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
- num_processed_samples += batch_size
- # gather the stats from all processes
- num_processed_samples = utils.reduce_across_processes(num_processed_samples)
- if (
- hasattr(data_loader.dataset, "__len__")
- and len(data_loader.dataset) != num_processed_samples
- and torch.distributed.get_rank() == 0
- ):
- # See FIXME above
- warnings.warn(
- f"It looks like the dataset has {len(data_loader.dataset)} samples, but {num_processed_samples} "
- "samples were used for the validation, which might bias the results. "
- "Try adjusting the batch size and / or the world size. "
- "Setting the world size to 1 is always a safe bet."
- )
- metric_logger.synchronize_between_processes()
- print(f"{header} Acc@1 {metric_logger.acc1.global_avg:.3f} Acc@5 {metric_logger.acc5.global_avg:.3f}")
- return metric_logger.acc1.global_avg
- def _get_cache_path(filepath):
- import hashlib
- h = hashlib.sha1(filepath.encode()).hexdigest()
- cache_path = os.path.join("~", ".torch", "vision", "datasets", "imagefolder", h[:10] + ".pt")
- cache_path = os.path.expanduser(cache_path)
- return cache_path
- def load_data(traindir, valdir, args):
- # Data loading code
- print("Loading data")
- val_resize_size, val_crop_size, train_crop_size = (
- args.val_resize_size,
- args.val_crop_size,
- args.train_crop_size,
- )
- interpolation = InterpolationMode(args.interpolation)
- print("Loading training data")
- st = time.time()
- cache_path = _get_cache_path(traindir)
- if args.cache_dataset and os.path.exists(cache_path):
- # Attention, as the transforms are also cached!
- print(f"Loading dataset_train from {cache_path}")
- dataset, _ = torch.load(cache_path)
- else:
- # We need a default value for the variables below because args may come
- # from train_quantization.py which doesn't define them.
- auto_augment_policy = getattr(args, "auto_augment", None)
- random_erase_prob = getattr(args, "random_erase", 0.0)
- ra_magnitude = getattr(args, "ra_magnitude", None)
- augmix_severity = getattr(args, "augmix_severity", None)
- dataset = torchvision.datasets.ImageFolder(
- traindir,
- presets.ClassificationPresetTrain(
- crop_size=train_crop_size,
- interpolation=interpolation,
- auto_augment_policy=auto_augment_policy,
- random_erase_prob=random_erase_prob,
- ra_magnitude=ra_magnitude,
- augmix_severity=augmix_severity,
- backend=args.backend,
- use_v2=args.use_v2,
- ),
- )
- if args.cache_dataset:
- print(f"Saving dataset_train to {cache_path}")
- utils.mkdir(os.path.dirname(cache_path))
- utils.save_on_master((dataset, traindir), cache_path)
- print("Took", time.time() - st)
- print("Loading validation data")
- cache_path = _get_cache_path(valdir)
- if args.cache_dataset and os.path.exists(cache_path):
- # Attention, as the transforms are also cached!
- print(f"Loading dataset_test from {cache_path}")
- dataset_test, _ = torch.load(cache_path)
- else:
- if args.weights and args.test_only:
- weights = torchvision.models.get_weight(args.weights)
- preprocessing = weights.transforms(antialias=True)
- if args.backend == "tensor":
- preprocessing = torchvision.transforms.Compose([torchvision.transforms.PILToTensor(), preprocessing])
- else:
- preprocessing = presets.ClassificationPresetEval(
- crop_size=val_crop_size,
- resize_size=val_resize_size,
- interpolation=interpolation,
- backend=args.backend,
- use_v2=args.use_v2,
- )
- dataset_test = torchvision.datasets.ImageFolder(
- valdir,
- preprocessing,
- )
- if args.cache_dataset:
- print(f"Saving dataset_test to {cache_path}")
- utils.mkdir(os.path.dirname(cache_path))
- utils.save_on_master((dataset_test, valdir), cache_path)
- print("Creating data loaders")
- if args.distributed:
- if hasattr(args, "ra_sampler") and args.ra_sampler:
- train_sampler = RASampler(dataset, shuffle=True, repetitions=args.ra_reps)
- else:
- train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
- test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
- else:
- train_sampler = torch.utils.data.RandomSampler(dataset)
- test_sampler = torch.utils.data.SequentialSampler(dataset_test)
- return dataset, dataset_test, train_sampler, test_sampler
- def main(args):
- if args.output_dir:
- utils.mkdir(args.output_dir)
- utils.init_distributed_mode(args)
- print(args)
- device = torch.device(args.device)
- if args.use_deterministic_algorithms:
- torch.backends.cudnn.benchmark = False
- torch.use_deterministic_algorithms(True)
- else:
- torch.backends.cudnn.benchmark = True
- train_dir = os.path.join(args.data_path, "train")
- val_dir = os.path.join(args.data_path, "val")
- dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir, args)
- num_classes = len(dataset.classes)
- mixup_cutmix = get_mixup_cutmix(
- mixup_alpha=args.mixup_alpha, cutmix_alpha=args.cutmix_alpha, num_categories=num_classes, use_v2=args.use_v2
- )
- if mixup_cutmix is not None:
- def collate_fn(batch):
- return mixup_cutmix(*default_collate(batch))
- else:
- collate_fn = default_collate
- data_loader = torch.utils.data.DataLoader(
- dataset,
- batch_size=args.batch_size,
- sampler=train_sampler,
- num_workers=args.workers,
- pin_memory=True,
- collate_fn=collate_fn,
- )
- data_loader_test = torch.utils.data.DataLoader(
- dataset_test, batch_size=args.batch_size, sampler=test_sampler, num_workers=args.workers, pin_memory=True
- )
- print("Creating model")
- model = torchvision.models.get_model(args.model, weights=args.weights, num_classes=num_classes)
- model.to(device)
- if args.distributed and args.sync_bn:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
- criterion = nn.CrossEntropyLoss(label_smoothing=args.label_smoothing)
- custom_keys_weight_decay = []
- if args.bias_weight_decay is not None:
- custom_keys_weight_decay.append(("bias", args.bias_weight_decay))
- if args.transformer_embedding_decay is not None:
- for key in ["class_token", "position_embedding", "relative_position_bias_table"]:
- custom_keys_weight_decay.append((key, args.transformer_embedding_decay))
- parameters = utils.set_weight_decay(
- model,
- args.weight_decay,
- norm_weight_decay=args.norm_weight_decay,
- custom_keys_weight_decay=custom_keys_weight_decay if len(custom_keys_weight_decay) > 0 else None,
- )
- opt_name = args.opt.lower()
- if opt_name.startswith("sgd"):
- optimizer = torch.optim.SGD(
- parameters,
- lr=args.lr,
- momentum=args.momentum,
- weight_decay=args.weight_decay,
- nesterov="nesterov" in opt_name,
- )
- elif opt_name == "rmsprop":
- optimizer = torch.optim.RMSprop(
- parameters, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, eps=0.0316, alpha=0.9
- )
- elif opt_name == "adamw":
- optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
- else:
- raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD, RMSprop and AdamW are supported.")
- scaler = torch.cuda.amp.GradScaler() if args.amp else None
- args.lr_scheduler = args.lr_scheduler.lower()
- if args.lr_scheduler == "steplr":
- main_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
- elif args.lr_scheduler == "cosineannealinglr":
- main_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
- optimizer, T_max=args.epochs - args.lr_warmup_epochs, eta_min=args.lr_min
- )
- elif args.lr_scheduler == "exponentiallr":
- main_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=args.lr_gamma)
- else:
- raise RuntimeError(
- f"Invalid lr scheduler '{args.lr_scheduler}'. Only StepLR, CosineAnnealingLR and ExponentialLR "
- "are supported."
- )
- if args.lr_warmup_epochs > 0:
- if args.lr_warmup_method == "linear":
- warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
- optimizer, start_factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
- )
- elif args.lr_warmup_method == "constant":
- warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
- optimizer, factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
- )
- else:
- raise RuntimeError(
- f"Invalid warmup lr method '{args.lr_warmup_method}'. Only linear and constant are supported."
- )
- lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
- optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[args.lr_warmup_epochs]
- )
- else:
- lr_scheduler = main_lr_scheduler
- model_without_ddp = model
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
- model_without_ddp = model.module
- model_ema = None
- if args.model_ema:
- # Decay adjustment that aims to keep the decay independent of other hyper-parameters originally proposed at:
- # https://github.com/facebookresearch/pycls/blob/f8cd9627/pycls/core/net.py#L123
- #
- # total_ema_updates = (Dataset_size / n_GPUs) * epochs / (batch_size_per_gpu * EMA_steps)
- # We consider constant = Dataset_size for a given dataset/setup and omit it. Thus:
- # adjust = 1 / total_ema_updates ~= n_GPUs * batch_size_per_gpu * EMA_steps / epochs
- adjust = args.world_size * args.batch_size * args.model_ema_steps / args.epochs
- alpha = 1.0 - args.model_ema_decay
- alpha = min(1.0, alpha * adjust)
- model_ema = utils.ExponentialMovingAverage(model_without_ddp, device=device, decay=1.0 - alpha)
- if args.resume:
- checkpoint = torch.load(args.resume, map_location="cpu")
- model_without_ddp.load_state_dict(checkpoint["model"])
- if not args.test_only:
- optimizer.load_state_dict(checkpoint["optimizer"])
- lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
- args.start_epoch = checkpoint["epoch"] + 1
- if model_ema:
- model_ema.load_state_dict(checkpoint["model_ema"])
- if scaler:
- scaler.load_state_dict(checkpoint["scaler"])
- if args.test_only:
- # We disable the cudnn benchmarking because it can noticeably affect the accuracy
- torch.backends.cudnn.benchmark = False
- torch.backends.cudnn.deterministic = True
- if model_ema:
- evaluate(model_ema, criterion, data_loader_test, device=device, log_suffix="EMA")
- else:
- evaluate(model, criterion, data_loader_test, device=device)
- return
- print("Start training")
- start_time = time.time()
- for epoch in range(args.start_epoch, args.epochs):
- if args.distributed:
- train_sampler.set_epoch(epoch)
- train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema, scaler)
- lr_scheduler.step()
- evaluate(model, criterion, data_loader_test, device=device)
- if model_ema:
- evaluate(model_ema, criterion, data_loader_test, device=device, log_suffix="EMA")
- if args.output_dir:
- checkpoint = {
- "model": model_without_ddp.state_dict(),
- "optimizer": optimizer.state_dict(),
- "lr_scheduler": lr_scheduler.state_dict(),
- "epoch": epoch,
- "args": args,
- }
- if model_ema:
- checkpoint["model_ema"] = model_ema.state_dict()
- if scaler:
- checkpoint["scaler"] = scaler.state_dict()
- utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
- utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print(f"Training time {total_time_str}")
- def get_args_parser(add_help=True):
- import argparse
- parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
- parser.add_argument("--data-path", default="/datasets01/imagenet_full_size/061417/", type=str, help="dataset path")
- parser.add_argument("--model", default="resnet18", type=str, help="model name")
- parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
- parser.add_argument(
- "-b", "--batch-size", default=32, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
- )
- parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run")
- parser.add_argument(
- "-j", "--workers", default=16, type=int, metavar="N", help="number of data loading workers (default: 16)"
- )
- parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
- parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
- parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
- parser.add_argument(
- "--wd",
- "--weight-decay",
- default=1e-4,
- type=float,
- metavar="W",
- help="weight decay (default: 1e-4)",
- dest="weight_decay",
- )
- parser.add_argument(
- "--norm-weight-decay",
- default=None,
- type=float,
- help="weight decay for Normalization layers (default: None, same value as --wd)",
- )
- parser.add_argument(
- "--bias-weight-decay",
- default=None,
- type=float,
- help="weight decay for bias parameters of all layers (default: None, same value as --wd)",
- )
- parser.add_argument(
- "--transformer-embedding-decay",
- default=None,
- type=float,
- help="weight decay for embedding parameters for vision transformer models (default: None, same value as --wd)",
- )
- parser.add_argument(
- "--label-smoothing", default=0.0, type=float, help="label smoothing (default: 0.0)", dest="label_smoothing"
- )
- parser.add_argument("--mixup-alpha", default=0.0, type=float, help="mixup alpha (default: 0.0)")
- parser.add_argument("--cutmix-alpha", default=0.0, type=float, help="cutmix alpha (default: 0.0)")
- parser.add_argument("--lr-scheduler", default="steplr", type=str, help="the lr scheduler (default: steplr)")
- parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)")
- parser.add_argument(
- "--lr-warmup-method", default="constant", type=str, help="the warmup method (default: constant)"
- )
- parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr")
- parser.add_argument("--lr-step-size", default=30, type=int, help="decrease lr every step-size epochs")
- parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
- parser.add_argument("--lr-min", default=0.0, type=float, help="minimum lr of lr schedule (default: 0.0)")
- parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
- parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
- parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
- parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
- parser.add_argument(
- "--cache-dataset",
- dest="cache_dataset",
- help="Cache the datasets for quicker initialization. It also serializes the transforms",
- action="store_true",
- )
- parser.add_argument(
- "--sync-bn",
- dest="sync_bn",
- help="Use sync batch norm",
- action="store_true",
- )
- parser.add_argument(
- "--test-only",
- dest="test_only",
- help="Only test the model",
- action="store_true",
- )
- parser.add_argument("--auto-augment", default=None, type=str, help="auto augment policy (default: None)")
- parser.add_argument("--ra-magnitude", default=9, type=int, help="magnitude of auto augment policy")
- parser.add_argument("--augmix-severity", default=3, type=int, help="severity of augmix policy")
- parser.add_argument("--random-erase", default=0.0, type=float, help="random erasing probability (default: 0.0)")
- # Mixed precision training parameters
- parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")
- # distributed training parameters
- parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
- parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
- parser.add_argument(
- "--model-ema", action="store_true", help="enable tracking Exponential Moving Average of model parameters"
- )
- parser.add_argument(
- "--model-ema-steps",
- type=int,
- default=32,
- help="the number of iterations that controls how often to update the EMA model (default: 32)",
- )
- parser.add_argument(
- "--model-ema-decay",
- type=float,
- default=0.99998,
- help="decay factor for Exponential Moving Average of model parameters (default: 0.99998)",
- )
- parser.add_argument(
- "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
- )
- parser.add_argument(
- "--interpolation", default="bilinear", type=str, help="the interpolation method (default: bilinear)"
- )
- parser.add_argument(
- "--val-resize-size", default=256, type=int, help="the resize size used for validation (default: 256)"
- )
- parser.add_argument(
- "--val-crop-size", default=224, type=int, help="the central crop size used for validation (default: 224)"
- )
- parser.add_argument(
- "--train-crop-size", default=224, type=int, help="the random crop size used for training (default: 224)"
- )
- parser.add_argument("--clip-grad-norm", default=None, type=float, help="the maximum gradient norm (default None)")
- parser.add_argument("--ra-sampler", action="store_true", help="whether to use Repeated Augmentation in training")
- parser.add_argument(
- "--ra-reps", default=3, type=int, help="number of repetitions for Repeated Augmentation (default: 3)"
- )
- parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
- parser.add_argument("--backend", default="PIL", type=str.lower, help="PIL or tensor - case insensitive")
- parser.add_argument("--use-v2", action="store_true", help="Use V2 transforms")
- return parser
- if __name__ == "__main__":
- args = get_args_parser().parse_args()
- main(args)
|