123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import json
- from time import time
- from ultralytics.hub.utils import HUB_WEB_ROOT, PREFIX, events
- from ultralytics.utils import LOGGER, SETTINGS
- from ultralytics.utils.torch_utils import model_info_for_loggers
- def on_pretrain_routine_end(trainer):
- """Logs info before starting timer for upload rate limit."""
- session = getattr(trainer, 'hub_session', None)
- if session:
- # Start timer for upload rate limit
- LOGGER.info(f'{PREFIX}View model at {HUB_WEB_ROOT}/models/{session.model_id} 🚀')
- session.timers = {'metrics': time(), 'ckpt': time()} # start timer on session.rate_limit
- def on_fit_epoch_end(trainer):
- """Uploads training progress metrics at the end of each epoch."""
- session = getattr(trainer, 'hub_session', None)
- if session:
- # Upload metrics after val end
- all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
- if trainer.epoch == 0:
- all_plots = {**all_plots, **model_info_for_loggers(trainer)}
- session.metrics_queue[trainer.epoch] = json.dumps(all_plots)
- if time() - session.timers['metrics'] > session.rate_limits['metrics']:
- session.upload_metrics()
- session.timers['metrics'] = time() # reset timer
- session.metrics_queue = {} # reset queue
- def on_model_save(trainer):
- """Saves checkpoints to Ultralytics HUB with rate limiting."""
- session = getattr(trainer, 'hub_session', None)
- if session:
- # Upload checkpoints with rate limiting
- is_best = trainer.best_fitness == trainer.fitness
- if time() - session.timers['ckpt'] > session.rate_limits['ckpt']:
- LOGGER.info(f'{PREFIX}Uploading checkpoint {HUB_WEB_ROOT}/models/{session.model_id}')
- session.upload_model(trainer.epoch, trainer.last, is_best)
- session.timers['ckpt'] = time() # reset timer
- def on_train_end(trainer):
- """Upload final model and metrics to Ultralytics HUB at the end of training."""
- session = getattr(trainer, 'hub_session', None)
- if session:
- # Upload final model and metrics with exponential standoff
- LOGGER.info(f'{PREFIX}Syncing final model...')
- session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True)
- session.alive = False # stop heartbeats
- LOGGER.info(f'{PREFIX}Done ✅\n'
- f'{PREFIX}View model at {HUB_WEB_ROOT}/models/{session.model_id} 🚀')
- def on_train_start(trainer):
- """Run events on train start."""
- events(trainer.args)
- def on_val_start(validator):
- """Runs events on validation start."""
- events(validator.args)
- def on_predict_start(predictor):
- """Run events on predict start."""
- events(predictor.args)
- def on_export_start(exporter):
- """Run events on export start."""
- events(exporter.args)
- callbacks = {
- 'on_pretrain_routine_end': on_pretrain_routine_end,
- 'on_fit_epoch_end': on_fit_epoch_end,
- 'on_model_save': on_model_save,
- 'on_train_end': on_train_end,
- 'on_train_start': on_train_start,
- 'on_val_start': on_val_start,
- 'on_predict_start': on_predict_start,
- 'on_export_start': on_export_start} if SETTINGS['hub'] is True else {} # verify enabled
|