predict.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. from ultralytics.engine.results import Results
  3. from ultralytics.models.yolo.detect.predict import DetectionPredictor
  4. from ultralytics.utils import DEFAULT_CFG, ops
  5. class SegmentationPredictor(DetectionPredictor):
  6. """
  7. A class extending the DetectionPredictor class for prediction based on a segmentation model.
  8. Example:
  9. ```python
  10. from ultralytics.utils import ASSETS
  11. from ultralytics.models.yolo.segment import SegmentationPredictor
  12. args = dict(model='yolov8n-seg.pt', source=ASSETS)
  13. predictor = SegmentationPredictor(overrides=args)
  14. predictor.predict_cli()
  15. ```
  16. """
  17. def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
  18. super().__init__(cfg, overrides, _callbacks)
  19. self.args.task = 'segment'
  20. def postprocess(self, preds, img, orig_imgs):
  21. p = ops.non_max_suppression(preds[0],
  22. self.args.conf,
  23. self.args.iou,
  24. agnostic=self.args.agnostic_nms,
  25. max_det=self.args.max_det,
  26. nc=len(self.model.names),
  27. classes=self.args.classes)
  28. results = []
  29. is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
  30. proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
  31. for i, pred in enumerate(p):
  32. orig_img = orig_imgs[i] if is_list else orig_imgs
  33. img_path = self.batch[0][i]
  34. if not len(pred): # save empty boxes
  35. masks = None
  36. elif self.args.retina_masks:
  37. if is_list:
  38. pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
  39. masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
  40. else:
  41. masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
  42. if is_list:
  43. pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
  44. results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
  45. return results