123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from pathlib import Path
- import numpy as np
- import torch
- from ultralytics.models.yolo.detect import DetectionValidator
- from ultralytics.utils import LOGGER, ops
- from ultralytics.utils.checks import check_requirements
- from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou
- from ultralytics.utils.plotting import output_to_target, plot_images
- class PoseValidator(DetectionValidator):
- """
- A class extending the DetectionValidator class for validation based on a pose model.
- Example:
- ```python
- from ultralytics.models.yolo.pose import PoseValidator
- args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml')
- validator = PoseValidator(args=args)
- validator()
- ```
- """
- def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
- """Initialize a 'PoseValidator' object with custom parameters and assigned attributes."""
- super().__init__(dataloader, save_dir, pbar, args, _callbacks)
- self.sigma = None
- self.kpt_shape = None
- self.args.task = 'pose'
- self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
- if isinstance(self.args.device, str) and self.args.device.lower() == 'mps':
- LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
- 'See https://github.com/ultralytics/ultralytics/issues/4031.')
- def preprocess(self, batch):
- """Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device."""
- batch = super().preprocess(batch)
- batch['keypoints'] = batch['keypoints'].to(self.device).float()
- return batch
- def get_desc(self):
- """Returns description of evaluation metrics in string format."""
- return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Pose(P',
- 'R', 'mAP50', 'mAP50-95)')
- def postprocess(self, preds):
- """Apply non-maximum suppression and return detections with high confidence scores."""
- return ops.non_max_suppression(preds,
- self.args.conf,
- self.args.iou,
- labels=self.lb,
- multi_label=True,
- agnostic=self.args.single_cls,
- max_det=self.args.max_det,
- nc=self.nc)
- def init_metrics(self, model):
- """Initiate pose estimation metrics for YOLO model."""
- super().init_metrics(model)
- self.kpt_shape = self.data['kpt_shape']
- is_pose = self.kpt_shape == [17, 3]
- nkpt = self.kpt_shape[0]
- self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt
- def update_metrics(self, preds, batch):
- """Metrics."""
- for si, pred in enumerate(preds):
- idx = batch['batch_idx'] == si
- cls = batch['cls'][idx]
- bbox = batch['bboxes'][idx]
- kpts = batch['keypoints'][idx]
- nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
- nk = kpts.shape[1] # number of keypoints
- shape = batch['ori_shape'][si]
- correct_kpts = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
- correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
- self.seen += 1
- if npr == 0:
- if nl:
- self.stats.append((correct_bboxes, correct_kpts, *torch.zeros(
- (2, 0), device=self.device), cls.squeeze(-1)))
- if self.args.plots:
- self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
- continue
- # Predictions
- if self.args.single_cls:
- pred[:, 5] = 0
- predn = pred.clone()
- ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
- ratio_pad=batch['ratio_pad'][si]) # native-space pred
- pred_kpts = predn[:, 6:].view(npr, nk, -1)
- ops.scale_coords(batch['img'][si].shape[1:], pred_kpts, shape, ratio_pad=batch['ratio_pad'][si])
- # Evaluate
- if nl:
- height, width = batch['img'].shape[2:]
- tbox = ops.xywh2xyxy(bbox) * torch.tensor(
- (width, height, width, height), device=self.device) # target boxes
- ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
- ratio_pad=batch['ratio_pad'][si]) # native-space labels
- tkpts = kpts.clone()
- tkpts[..., 0] *= width
- tkpts[..., 1] *= height
- tkpts = ops.scale_coords(batch['img'][si].shape[1:], tkpts, shape, ratio_pad=batch['ratio_pad'][si])
- labelsn = torch.cat((cls, tbox), 1) # native-space labels
- correct_bboxes = self._process_batch(predn[:, :6], labelsn)
- correct_kpts = self._process_batch(predn[:, :6], labelsn, pred_kpts, tkpts)
- if self.args.plots:
- self.confusion_matrix.process_batch(predn, labelsn)
- # Append correct_masks, correct_boxes, pconf, pcls, tcls
- self.stats.append((correct_bboxes, correct_kpts, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
- # Save
- if self.args.save_json:
- self.pred_to_json(predn, batch['im_file'][si])
- # if self.args.save_txt:
- # save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
- def _process_batch(self, detections, labels, pred_kpts=None, gt_kpts=None):
- """
- Return correct prediction matrix.
- Args:
- detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
- Each detection is of the format: x1, y1, x2, y2, conf, class.
- labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
- Each label is of the format: class, x1, y1, x2, y2.
- pred_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing predicted keypoints.
- 51 corresponds to 17 keypoints each with 3 values.
- gt_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing ground truth keypoints.
- Returns:
- torch.Tensor: Correct prediction matrix of shape [N, 10] for 10 IoU levels.
- """
- if pred_kpts is not None and gt_kpts is not None:
- # `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384
- area = ops.xyxy2xywh(labels[:, 1:])[:, 2:].prod(1) * 0.53
- iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area)
- else: # boxes
- iou = box_iou(labels[:, 1:], detections[:, :4])
- return self.match_predictions(detections[:, 5], labels[:, 0], iou)
- def plot_val_samples(self, batch, ni):
- """Plots and saves validation set samples with predicted bounding boxes and keypoints."""
- plot_images(batch['img'],
- batch['batch_idx'],
- batch['cls'].squeeze(-1),
- batch['bboxes'],
- kpts=batch['keypoints'],
- paths=batch['im_file'],
- fname=self.save_dir / f'val_batch{ni}_labels.jpg',
- names=self.names,
- on_plot=self.on_plot)
- def plot_predictions(self, batch, preds, ni):
- """Plots predictions for YOLO model."""
- pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0)
- plot_images(batch['img'],
- *output_to_target(preds, max_det=self.args.max_det),
- kpts=pred_kpts,
- paths=batch['im_file'],
- fname=self.save_dir / f'val_batch{ni}_pred.jpg',
- names=self.names,
- on_plot=self.on_plot) # pred
- def pred_to_json(self, predn, filename):
- """Converts YOLO predictions to COCO JSON format."""
- stem = Path(filename).stem
- image_id = int(stem) if stem.isnumeric() else stem
- box = ops.xyxy2xywh(predn[:, :4]) # xywh
- box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
- for p, b in zip(predn.tolist(), box.tolist()):
- self.jdict.append({
- 'image_id': image_id,
- 'category_id': self.class_map[int(p[5])],
- 'bbox': [round(x, 3) for x in b],
- 'keypoints': p[6:],
- 'score': round(p[4], 5)})
- def eval_json(self, stats):
- """Evaluates object detection model using COCO JSON format."""
- if self.args.save_json and self.is_coco and len(self.jdict):
- anno_json = self.data['path'] / 'annotations/person_keypoints_val2017.json' # annotations
- pred_json = self.save_dir / 'predictions.json' # predictions
- LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
- try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
- check_requirements('pycocotools>=2.0.6')
- from pycocotools.coco import COCO # noqa
- from pycocotools.cocoeval import COCOeval # noqa
- for x in anno_json, pred_json:
- assert x.is_file(), f'{x} file not found'
- anno = COCO(str(anno_json)) # init annotations api
- pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
- for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'keypoints')]):
- if self.is_coco:
- eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
- eval.evaluate()
- eval.accumulate()
- eval.summarize()
- idx = i * 4 + 2
- stats[self.metrics.keys[idx + 1]], stats[
- self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
- except Exception as e:
- LOGGER.warning(f'pycocotools unable to run: {e}')
- return stats
|