123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import os
- from pathlib import Path
- import numpy as np
- import torch
- from ultralytics.data import build_dataloader, build_yolo_dataset, converter
- from ultralytics.engine.validator import BaseValidator
- from ultralytics.utils import LOGGER, ops
- from ultralytics.utils.checks import check_requirements
- from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
- from ultralytics.utils.plotting import output_to_target, plot_images
- from ultralytics.utils.torch_utils import de_parallel
- class DetectionValidator(BaseValidator):
- """
- A class extending the BaseValidator class for validation based on a detection model.
- Example:
- ```python
- from ultralytics.models.yolo.detect import DetectionValidator
- args = dict(model='yolov8n.pt', data='coco8.yaml')
- validator = DetectionValidator(args=args)
- validator()
- ```
- """
- def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
- """Initialize detection model with necessary variables and settings."""
- super().__init__(dataloader, save_dir, pbar, args, _callbacks)
- self.nt_per_class = None
- self.is_coco = False
- self.class_map = None
- self.args.task = 'detect'
- self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
- self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
- self.niou = self.iouv.numel()
- self.lb = [] # for autolabelling
- def preprocess(self, batch):
- """Preprocesses batch of images for YOLO training."""
- batch['img'] = batch['img'].to(self.device, non_blocking=True)
- batch['img'] = (batch['img'].half() if self.args.half else batch['img'].float()) / 255
- for k in ['batch_idx', 'cls', 'bboxes']:
- batch[k] = batch[k].to(self.device)
- if self.args.save_hybrid:
- height, width = batch['img'].shape[2:]
- nb = len(batch['img'])
- bboxes = batch['bboxes'] * torch.tensor((width, height, width, height), device=self.device)
- self.lb = [
- torch.cat([batch['cls'][batch['batch_idx'] == i], bboxes[batch['batch_idx'] == i]], dim=-1)
- for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling
- return batch
- def init_metrics(self, model):
- """Initialize evaluation metrics for YOLO."""
- val = self.data.get(self.args.split, '') # validation path
- self.is_coco = isinstance(val, str) and 'coco' in val and val.endswith(f'{os.sep}val2017.txt') # is COCO
- self.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(1000))
- self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
- self.names = model.names
- self.nc = len(model.names)
- self.metrics.names = self.names
- self.metrics.plot = self.args.plots
- self.confusion_matrix = ConfusionMatrix(nc=self.nc)
- self.seen = 0
- self.jdict = []
- self.stats = []
- def get_desc(self):
- """Return a formatted string summarizing class metrics of YOLO model."""
- return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)')
- def postprocess(self, preds):
- """Apply Non-maximum suppression to prediction outputs."""
- return ops.non_max_suppression(preds,
- self.args.conf,
- self.args.iou,
- labels=self.lb,
- multi_label=True,
- agnostic=self.args.single_cls,
- max_det=self.args.max_det)
- def update_metrics(self, preds, batch):
- """Metrics."""
- for si, pred in enumerate(preds):
- idx = batch['batch_idx'] == si
- cls = batch['cls'][idx]
- bbox = batch['bboxes'][idx]
- nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
- shape = batch['ori_shape'][si]
- correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
- self.seen += 1
- if npr == 0:
- if nl:
- self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
- if self.args.plots:
- self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
- continue
- # Predictions
- if self.args.single_cls:
- pred[:, 5] = 0
- predn = pred.clone()
- ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
- ratio_pad=batch['ratio_pad'][si]) # native-space pred
- # Evaluate
- if nl:
- height, width = batch['img'].shape[2:]
- tbox = ops.xywh2xyxy(bbox) * torch.tensor(
- (width, height, width, height), device=self.device) # target boxes
- ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
- ratio_pad=batch['ratio_pad'][si]) # native-space labels
- labelsn = torch.cat((cls, tbox), 1) # native-space labels
- correct_bboxes = self._process_batch(predn, labelsn)
- # TODO: maybe remove these `self.` arguments as they already are member variable
- if self.args.plots:
- self.confusion_matrix.process_batch(predn, labelsn)
- self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
- # Save
- if self.args.save_json:
- self.pred_to_json(predn, batch['im_file'][si])
- if self.args.save_txt:
- file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
- self.save_one_txt(predn, self.args.save_conf, shape, file)
- def finalize_metrics(self, *args, **kwargs):
- """Set final values for metrics speed and confusion matrix."""
- self.metrics.speed = self.speed
- self.metrics.confusion_matrix = self.confusion_matrix
- def get_stats(self):
- """Returns metrics statistics and results dictionary."""
- stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
- if len(stats) and stats[0].any():
- self.metrics.process(*stats)
- self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
- return self.metrics.results_dict
- def print_results(self):
- """Prints training/validation set metrics per class."""
- pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format
- LOGGER.info(pf % ('all', self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
- if self.nt_per_class.sum() == 0:
- LOGGER.warning(
- f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
- # Print results per class
- if self.args.verbose and not self.training and self.nc > 1 and len(self.stats):
- for i, c in enumerate(self.metrics.ap_class_index):
- LOGGER.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
- if self.args.plots:
- for normalize in True, False:
- self.confusion_matrix.plot(save_dir=self.save_dir,
- names=self.names.values(),
- normalize=normalize,
- on_plot=self.on_plot)
- def _process_batch(self, detections, labels):
- """
- Return correct prediction matrix.
- Args:
- detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
- Each detection is of the format: x1, y1, x2, y2, conf, class.
- labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
- Each label is of the format: class, x1, y1, x2, y2.
- Returns:
- (torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
- """
- iou = box_iou(labels[:, 1:], detections[:, :4])
- return self.match_predictions(detections[:, 5], labels[:, 0], iou)
- def build_dataset(self, img_path, mode='val', batch=None):
- """
- Build YOLO Dataset.
- Args:
- img_path (str): Path to the folder containing images.
- mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
- batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
- """
- gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
- return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs)
- def get_dataloader(self, dataset_path, batch_size):
- """Construct and return dataloader."""
- dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val')
- return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) # return dataloader
- def plot_val_samples(self, batch, ni):
- """Plot validation image samples."""
- plot_images(batch['img'],
- batch['batch_idx'],
- batch['cls'].squeeze(-1),
- batch['bboxes'],
- paths=batch['im_file'],
- fname=self.save_dir / f'val_batch{ni}_labels.jpg',
- names=self.names,
- on_plot=self.on_plot)
- def plot_predictions(self, batch, preds, ni):
- """Plots predicted bounding boxes on input images and saves the result."""
- plot_images(batch['img'],
- *output_to_target(preds, max_det=self.args.max_det),
- paths=batch['im_file'],
- fname=self.save_dir / f'val_batch{ni}_pred.jpg',
- names=self.names,
- on_plot=self.on_plot) # pred
- def save_one_txt(self, predn, save_conf, shape, file):
- """Save YOLO detections to a txt file in normalized coordinates in a specific format."""
- gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
- for *xyxy, conf, cls in predn.tolist():
- xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
- line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
- with open(file, 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
- def pred_to_json(self, predn, filename):
- """Serialize YOLO predictions to COCO json format."""
- stem = Path(filename).stem
- image_id = int(stem) if stem.isnumeric() else stem
- box = ops.xyxy2xywh(predn[:, :4]) # xywh
- box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
- for p, b in zip(predn.tolist(), box.tolist()):
- self.jdict.append({
- 'image_id': image_id,
- 'category_id': self.class_map[int(p[5])],
- 'bbox': [round(x, 3) for x in b],
- 'score': round(p[4], 5)})
- def eval_json(self, stats):
- """Evaluates YOLO output in JSON format and returns performance statistics."""
- if self.args.save_json and self.is_coco and len(self.jdict):
- anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
- pred_json = self.save_dir / 'predictions.json' # predictions
- LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
- try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
- check_requirements('pycocotools>=2.0.6')
- from pycocotools.coco import COCO # noqa
- from pycocotools.cocoeval import COCOeval # noqa
- for x in anno_json, pred_json:
- assert x.is_file(), f'{x} file not found'
- anno = COCO(str(anno_json)) # init annotations api
- pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
- eval = COCOeval(anno, pred, 'bbox')
- if self.is_coco:
- eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
- eval.evaluate()
- eval.accumulate()
- eval.summarize()
- stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
- except Exception as e:
- LOGGER.warning(f'pycocotools unable to run: {e}')
- return stats
|