predict.py 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. from ultralytics.engine.predictor import BasePredictor
  3. from ultralytics.engine.results import Results
  4. from ultralytics.utils import ops
  5. class DetectionPredictor(BasePredictor):
  6. """
  7. A class extending the BasePredictor class for prediction based on a detection model.
  8. Example:
  9. ```python
  10. from ultralytics.utils import ASSETS
  11. from ultralytics.models.yolo.detect import DetectionPredictor
  12. args = dict(model='yolov8n.pt', source=ASSETS)
  13. predictor = DetectionPredictor(overrides=args)
  14. predictor.predict_cli()
  15. ```
  16. """
  17. def postprocess(self, preds, img, orig_imgs):
  18. """Post-processes predictions and returns a list of Results objects."""
  19. preds = ops.non_max_suppression(preds,
  20. self.args.conf,
  21. self.args.iou,
  22. agnostic=self.args.agnostic_nms,
  23. max_det=self.args.max_det,
  24. classes=self.args.classes)
  25. results = []
  26. is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
  27. for i, pred in enumerate(preds):
  28. orig_img = orig_imgs[i] if is_list else orig_imgs
  29. if is_list:
  30. pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
  31. img_path = self.batch[0][i]
  32. results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
  33. return results