123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """
- Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
- Usage - sources:
- $ yolo mode=predict model=yolov8n.pt source=0 # webcam
- img.jpg # image
- vid.mp4 # video
- screen # screenshot
- path/ # directory
- list.txt # list of images
- list.streams # list of streams
- 'path/*.jpg' # glob
- 'https://youtu.be/Zgi9g1ksQHc' # YouTube
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
- Usage - formats:
- $ yolo mode=predict model=yolov8n.pt # PyTorch
- yolov8n.torchscript # TorchScript
- yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
- yolov8n_openvino_model # OpenVINO
- yolov8n.engine # TensorRT
- yolov8n.mlpackage # CoreML (macOS-only)
- yolov8n_saved_model # TensorFlow SavedModel
- yolov8n.pb # TensorFlow GraphDef
- yolov8n.tflite # TensorFlow Lite
- yolov8n_edgetpu.tflite # TensorFlow Edge TPU
- yolov8n_paddle_model # PaddlePaddle
- """
- import platform
- from pathlib import Path
- import cv2
- import numpy as np
- import torch
- from ultralytics.cfg import get_cfg
- from ultralytics.data import load_inference_source
- from ultralytics.data.augment import LetterBox, classify_transforms
- from ultralytics.nn.autobackend import AutoBackend
- from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, SETTINGS, WINDOWS, callbacks, colorstr, ops
- from ultralytics.utils.checks import check_imgsz, check_imshow
- from ultralytics.utils.files import increment_path
- from ultralytics.utils.torch_utils import select_device, smart_inference_mode
- STREAM_WARNING = """
- WARNING ⚠️ stream/video/webcam/dir predict source will accumulate results in RAM unless `stream=True` is passed,
- causing potential out-of-memory errors for large sources or long-running streams/videos.
- Example:
- results = model(source=..., stream=True) # generator of Results objects
- for r in results:
- boxes = r.boxes # Boxes object for bbox outputs
- masks = r.masks # Masks object for segment masks outputs
- probs = r.probs # Class probabilities for classification outputs
- """
- class BasePredictor:
- """
- BasePredictor
- A base class for creating predictors.
- Attributes:
- args (SimpleNamespace): Configuration for the predictor.
- save_dir (Path): Directory to save results.
- done_warmup (bool): Whether the predictor has finished setup.
- model (nn.Module): Model used for prediction.
- data (dict): Data configuration.
- device (torch.device): Device used for prediction.
- dataset (Dataset): Dataset used for prediction.
- vid_path (str): Path to video file.
- vid_writer (cv2.VideoWriter): Video writer for saving video output.
- data_path (str): Path to data.
- """
- def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
- """
- Initializes the BasePredictor class.
- Args:
- cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
- overrides (dict, optional): Configuration overrides. Defaults to None.
- """
- self.args = get_cfg(cfg, overrides)
- self.save_dir = self.get_save_dir()
- if self.args.conf is None:
- self.args.conf = 0.25 # default conf=0.25
- self.done_warmup = False
- if self.args.show:
- self.args.show = check_imshow(warn=True)
- # Usable if setup is done
- self.model = None
- self.data = self.args.data # data_dict
- self.imgsz = None
- self.device = None
- self.dataset = None
- self.vid_path, self.vid_writer = None, None
- self.plotted_img = None
- self.data_path = None
- self.source_type = None
- self.batch = None
- self.results = None
- self.transforms = None
- self.callbacks = _callbacks or callbacks.get_default_callbacks()
- self.txt_path = None
- callbacks.add_integration_callbacks(self)
- def get_save_dir(self):
- project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
- name = self.args.name or f'{self.args.mode}'
- return increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
- def preprocess(self, im):
- """Prepares input image before inference.
- Args:
- im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
- """
- not_tensor = not isinstance(im, torch.Tensor)
- if not_tensor:
- im = np.stack(self.pre_transform(im))
- im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
- im = np.ascontiguousarray(im) # contiguous
- im = torch.from_numpy(im)
- img = im.to(self.device)
- img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
- if not_tensor:
- img /= 255 # 0 - 255 to 0.0 - 1.0
- return img
- def inference(self, im, *args, **kwargs):
- visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem,
- mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False
- return self.model(im, augment=self.args.augment, visualize=visualize)
- def pre_transform(self, im):
- """
- Pre-transform input image before inference.
- Args:
- im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
- Returns:
- (list): A list of transformed images.
- """
- same_shapes = all(x.shape == im[0].shape for x in im)
- auto = same_shapes and self.model.pt
- return [LetterBox(self.imgsz, auto=auto, stride=self.model.stride)(image=x) for x in im]
- def write_results(self, idx, results, batch):
- """Write inference results to a file or directory."""
- p, im, _ = batch
- log_string = ''
- if len(im.shape) == 3:
- im = im[None] # expand for batch dim
- if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
- log_string += f'{idx}: '
- frame = self.dataset.count
- else:
- frame = getattr(self.dataset, 'frame', 0)
- self.data_path = p
- self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
- log_string += '%gx%g ' % im.shape[2:] # print string
- result = results[idx]
- log_string += result.verbose()
- if self.args.save or self.args.show: # Add bbox to image
- plot_args = {
- 'line_width': self.args.line_width,
- 'boxes': self.args.boxes,
- 'conf': self.args.show_conf,
- 'labels': self.args.show_labels}
- if not self.args.retina_masks:
- plot_args['im_gpu'] = im[idx]
- self.plotted_img = result.plot(**plot_args)
- # Write
- if self.args.save_txt:
- result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf)
- if self.args.save_crop:
- result.save_crop(save_dir=self.save_dir / 'crops',
- file_name=self.data_path.stem + ('' if self.dataset.mode == 'image' else f'_{frame}'))
- return log_string
- def postprocess(self, preds, img, orig_imgs):
- """Post-processes predictions for an image and returns them."""
- return preds
- def __call__(self, source=None, model=None, stream=False, *args, **kwargs):
- """Performs inference on an image or stream."""
- self.stream = stream
- if stream:
- return self.stream_inference(source, model, *args, **kwargs)
- else:
- return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
- def predict_cli(self, source=None, model=None):
- """Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode."""
- gen = self.stream_inference(source, model)
- for _ in gen: # running CLI inference without accumulating any outputs (do not modify)
- pass
- def setup_source(self, source):
- """Sets up source and inference mode."""
- self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
- self.transforms = getattr(self.model.model, 'transforms', classify_transforms(
- self.imgsz[0])) if self.args.task == 'classify' else None
- self.dataset = load_inference_source(source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride)
- self.source_type = self.dataset.source_type
- if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
- len(self.dataset) > 1000 or # images
- any(getattr(self.dataset, 'video_flag', [False]))): # videos
- LOGGER.warning(STREAM_WARNING)
- self.vid_path, self.vid_writer = [None] * self.dataset.bs, [None] * self.dataset.bs
- @smart_inference_mode()
- def stream_inference(self, source=None, model=None, *args, **kwargs):
- """Streams real-time inference on camera feed and saves results to file."""
- if self.args.verbose:
- LOGGER.info('')
- # Setup model
- if not self.model:
- self.setup_model(model)
- # Setup source every time predict is called
- self.setup_source(source if source is not None else self.args.source)
- # Check if save_dir/ label file exists
- if self.args.save or self.args.save_txt:
- (self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
- # Warmup model
- if not self.done_warmup:
- self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
- self.done_warmup = True
- self.seen, self.windows, self.batch, profilers = 0, [], None, (ops.Profile(), ops.Profile(), ops.Profile())
- self.run_callbacks('on_predict_start')
- for batch in self.dataset:
- self.run_callbacks('on_predict_batch_start')
- self.batch = batch
- path, im0s, vid_cap, s = batch
- # Preprocess
- with profilers[0]:
- im = self.preprocess(im0s)
- # Inference
- with profilers[1]:
- preds = self.inference(im, *args, **kwargs)
- # Postprocess
- with profilers[2]:
- self.results = self.postprocess(preds, im, im0s)
- self.run_callbacks('on_predict_postprocess_end')
- # Visualize, save, write results
- n = len(im0s)
- for i in range(n):
- self.seen += 1
- self.results[i].speed = {
- 'preprocess': profilers[0].dt * 1E3 / n,
- 'inference': profilers[1].dt * 1E3 / n,
- 'postprocess': profilers[2].dt * 1E3 / n}
- p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
- p = Path(p)
- if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
- s += self.write_results(i, self.results, (p, im, im0))
- if self.args.save or self.args.save_txt:
- self.results[i].save_dir = self.save_dir.__str__()
- if self.args.show and self.plotted_img is not None:
- self.show(p)
- if self.args.save and self.plotted_img is not None:
- self.save_preds(vid_cap, i, str(self.save_dir / p.name))
- self.run_callbacks('on_predict_batch_end')
- yield from self.results
- # Print time (inference-only)
- if self.args.verbose:
- LOGGER.info(f'{s}{profilers[1].dt * 1E3:.1f}ms')
- # Release assets
- if isinstance(self.vid_writer[-1], cv2.VideoWriter):
- self.vid_writer[-1].release() # release final video writer
- # Print results
- if self.args.verbose and self.seen:
- t = tuple(x.t / self.seen * 1E3 for x in profilers) # speeds per image
- LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape '
- f'{(1, 3, *im.shape[2:])}' % t)
- if self.args.save or self.args.save_txt or self.args.save_crop:
- nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels
- s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
- LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
- self.run_callbacks('on_predict_end')
- def setup_model(self, model, verbose=True):
- """Initialize YOLO model with given parameters and set it to evaluation mode."""
- self.model = AutoBackend(model or self.args.model,
- device=select_device(self.args.device, verbose=verbose),
- dnn=self.args.dnn,
- data=self.args.data,
- fp16=self.args.half,
- fuse=True,
- verbose=verbose)
- self.device = self.model.device # update device
- self.args.half = self.model.fp16 # update half
- self.model.eval()
- def show(self, p):
- """Display an image in a window using OpenCV imshow()."""
- im0 = self.plotted_img
- if platform.system() == 'Linux' and p not in self.windows:
- self.windows.append(p)
- cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
- cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
- cv2.imshow(str(p), im0)
- cv2.waitKey(500 if self.batch[3].startswith('image') else 1) # 1 millisecond
- def save_preds(self, vid_cap, idx, save_path):
- """Save video predictions as mp4 at specified path."""
- im0 = self.plotted_img
- # Save imgs
- if self.dataset.mode == 'image':
- cv2.imwrite(save_path, im0)
- else: # 'video' or 'stream'
- if self.vid_path[idx] != save_path: # new video
- self.vid_path[idx] = save_path
- if isinstance(self.vid_writer[idx], cv2.VideoWriter):
- self.vid_writer[idx].release() # release previous video writer
- if vid_cap: # video
- fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- else: # stream
- fps, w, h = 30, im0.shape[1], im0.shape[0]
- suffix, fourcc = ('.mp4', 'avc1') if MACOS else ('.avi', 'WMV2') if WINDOWS else ('.avi', 'MJPG')
- save_path = str(Path(save_path).with_suffix(suffix))
- self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
- self.vid_writer[idx].write(im0)
- def run_callbacks(self, event: str):
- """Runs all registered callbacks for a specific event."""
- for callback in self.callbacks.get(event, []):
- callback(self)
- def add_callback(self, event: str, func):
- """
- Add callback
- """
- self.callbacks[event].append(func)
|