123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import glob
- import math
- import os
- import time
- from dataclasses import dataclass
- from pathlib import Path
- from threading import Thread
- from urllib.parse import urlparse
- import cv2
- import numpy as np
- import requests
- import torch
- from PIL import Image
- from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
- from ultralytics.utils import LOGGER, is_colab, is_kaggle, ops
- from ultralytics.utils.checks import check_requirements
- @dataclass
- class SourceTypes:
- webcam: bool = False
- screenshot: bool = False
- from_img: bool = False
- tensor: bool = False
- class LoadStreams:
- """YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`."""
- def __init__(self, sources='file.streams', imgsz=640, vid_stride=1):
- """Initialize instance variables and check for consistent input stream shapes."""
- torch.backends.cudnn.benchmark = True # faster for fixed-size inference
- self.running = True # running flag for Thread
- self.mode = 'stream'
- self.imgsz = imgsz
- self.vid_stride = vid_stride # video frame-rate stride
- sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
- n = len(sources)
- self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
- self.imgs, self.fps, self.frames, self.threads, self.shape = [[]] * n, [0] * n, [0] * n, [None] * n, [None] * n
- self.caps = [None] * n # video capture objects
- for i, s in enumerate(sources): # index, source
- # Start thread to read frames from video stream
- st = f'{i + 1}/{n}: {s}... '
- if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
- # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
- s = get_best_youtube_url(s)
- s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
- if s == 0 and (is_colab() or is_kaggle()):
- raise NotImplementedError("'source=0' webcam not supported in Colab and Kaggle notebooks. "
- "Try running 'source=0' in a local environment.")
- self.caps[i] = cv2.VideoCapture(s) # store video capture object
- if not self.caps[i].isOpened():
- raise ConnectionError(f'{st}Failed to open {s}')
- w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
- fps = self.caps[i].get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
- self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
- 'inf') # infinite stream fallback
- self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
- success, im = self.caps[i].read() # guarantee first frame
- if not success or im is None:
- raise ConnectionError(f'{st}Failed to read images from {s}')
- self.imgs[i].append(im)
- self.shape[i] = im.shape
- self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
- LOGGER.info(f'{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)')
- self.threads[i].start()
- LOGGER.info('') # newline
- # Check for common shapes
- self.bs = self.__len__()
- def update(self, i, cap, stream):
- """Read stream `i` frames in daemon thread."""
- n, f = 0, self.frames[i] # frame number, frame array
- while self.running and cap.isOpened() and n < (f - 1):
- # Only read a new frame if the buffer is empty
- if not self.imgs[i]:
- n += 1
- cap.grab() # .read() = .grab() followed by .retrieve()
- if n % self.vid_stride == 0:
- success, im = cap.retrieve()
- if not success:
- im = np.zeros(self.shape[i], dtype=np.uint8)
- LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
- cap.open(stream) # re-open stream if signal was lost
- self.imgs[i].append(im) # add image to buffer
- else:
- time.sleep(0.01) # wait until the buffer is empty
- def close(self):
- """Close stream loader and release resources."""
- self.running = False # stop flag for Thread
- for thread in self.threads:
- if thread.is_alive():
- thread.join(timeout=5) # Add timeout
- for cap in self.caps: # Iterate through the stored VideoCapture objects
- try:
- cap.release() # release video capture
- except Exception as e:
- LOGGER.warning(f'WARNING ⚠️ Could not release VideoCapture object: {e}')
- cv2.destroyAllWindows()
- def __iter__(self):
- """Iterates through YOLO image feed and re-opens unresponsive streams."""
- self.count = -1
- return self
- def __next__(self):
- """Returns source paths, transformed and original images for processing."""
- self.count += 1
- # Wait until a frame is available in each buffer
- while not all(self.imgs):
- if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
- cv2.destroyAllWindows()
- raise StopIteration
- time.sleep(1 / min(self.fps))
- # Get and remove the next frame from imgs buffer
- return self.sources, [x.pop(0) for x in self.imgs], None, ''
- def __len__(self):
- """Return the length of the sources object."""
- return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
- class LoadScreenshots:
- """YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`."""
- def __init__(self, source, imgsz=640):
- """source = [screen_number left top width height] (pixels)."""
- check_requirements('mss')
- import mss # noqa
- source, *params = source.split()
- self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
- if len(params) == 1:
- self.screen = int(params[0])
- elif len(params) == 4:
- left, top, width, height = (int(x) for x in params)
- elif len(params) == 5:
- self.screen, left, top, width, height = (int(x) for x in params)
- self.imgsz = imgsz
- self.mode = 'stream'
- self.frame = 0
- self.sct = mss.mss()
- self.bs = 1
- # Parse monitor shape
- monitor = self.sct.monitors[self.screen]
- self.top = monitor['top'] if top is None else (monitor['top'] + top)
- self.left = monitor['left'] if left is None else (monitor['left'] + left)
- self.width = width or monitor['width']
- self.height = height or monitor['height']
- self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height}
- def __iter__(self):
- """Returns an iterator of the object."""
- return self
- def __next__(self):
- """mss screen capture: get raw pixels from the screen as np array."""
- im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3] # BGRA to BGR
- s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
- self.frame += 1
- return [str(self.screen)], [im0], None, s # screen, img, vid_cap, string
- class LoadImages:
- """YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`."""
- def __init__(self, path, imgsz=640, vid_stride=1):
- """Initialize the Dataloader and raise FileNotFoundError if file not found."""
- parent = None
- if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line
- parent = Path(path).parent
- path = Path(path).read_text().splitlines() # list of sources
- files = []
- for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
- a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
- if '*' in a:
- files.extend(sorted(glob.glob(a, recursive=True))) # glob
- elif os.path.isdir(a):
- files.extend(sorted(glob.glob(os.path.join(a, '*.*')))) # dir
- elif os.path.isfile(a):
- files.append(a) # files (absolute or relative to CWD)
- elif parent and (parent / p).is_file():
- files.append(str((parent / p).absolute())) # files (relative to *.txt file parent)
- else:
- raise FileNotFoundError(f'{p} does not exist')
- images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
- videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
- ni, nv = len(images), len(videos)
- self.imgsz = imgsz
- self.files = images + videos
- self.nf = ni + nv # number of files
- self.video_flag = [False] * ni + [True] * nv
- self.mode = 'image'
- self.vid_stride = vid_stride # video frame-rate stride
- self.bs = 1
- if any(videos):
- self._new_video(videos[0]) # new video
- else:
- self.cap = None
- if self.nf == 0:
- raise FileNotFoundError(f'No images or videos found in {p}. '
- f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}')
- def __iter__(self):
- """Returns an iterator object for VideoStream or ImageFolder."""
- self.count = 0
- return self
- def __next__(self):
- """Return next image, path and metadata from dataset."""
- if self.count == self.nf:
- raise StopIteration
- path = self.files[self.count]
- if self.video_flag[self.count]:
- # Read video
- self.mode = 'video'
- for _ in range(self.vid_stride):
- self.cap.grab()
- success, im0 = self.cap.retrieve()
- while not success:
- self.count += 1
- self.cap.release()
- if self.count == self.nf: # last video
- raise StopIteration
- path = self.files[self.count]
- self._new_video(path)
- success, im0 = self.cap.read()
- self.frame += 1
- # im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
- s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
- else:
- # Read image
- self.count += 1
- im0 = cv2.imread(path) # BGR
- if im0 is None:
- raise FileNotFoundError(f'Image Not Found {path}')
- s = f'image {self.count}/{self.nf} {path}: '
- return [path], [im0], self.cap, s
- def _new_video(self, path):
- """Create a new video capture object."""
- self.frame = 0
- self.cap = cv2.VideoCapture(path)
- self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
- def __len__(self):
- """Returns the number of files in the object."""
- return self.nf # number of files
- class LoadPilAndNumpy:
- def __init__(self, im0, imgsz=640):
- """Initialize PIL and Numpy Dataloader."""
- if not isinstance(im0, list):
- im0 = [im0]
- self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
- self.im0 = [self._single_check(im) for im in im0]
- self.imgsz = imgsz
- self.mode = 'image'
- # Generate fake paths
- self.bs = len(self.im0)
- @staticmethod
- def _single_check(im):
- """Validate and format an image to numpy array."""
- assert isinstance(im, (Image.Image, np.ndarray)), f'Expected PIL/np.ndarray image type, but got {type(im)}'
- if isinstance(im, Image.Image):
- if im.mode != 'RGB':
- im = im.convert('RGB')
- im = np.asarray(im)[:, :, ::-1]
- im = np.ascontiguousarray(im) # contiguous
- return im
- def __len__(self):
- """Returns the length of the 'im0' attribute."""
- return len(self.im0)
- def __next__(self):
- """Returns batch paths, images, processed images, None, ''."""
- if self.count == 1: # loop only once as it's batch inference
- raise StopIteration
- self.count += 1
- return self.paths, self.im0, None, ''
- def __iter__(self):
- """Enables iteration for class LoadPilAndNumpy."""
- self.count = 0
- return self
- class LoadTensor:
- def __init__(self, im0) -> None:
- self.im0 = self._single_check(im0)
- self.bs = self.im0.shape[0]
- self.mode = 'image'
- self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
- @staticmethod
- def _single_check(im, stride=32):
- """Validate and format an image to torch.Tensor."""
- s = f'WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) ' \
- f'divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible.'
- if len(im.shape) != 4:
- if len(im.shape) != 3:
- raise ValueError(s)
- LOGGER.warning(s)
- im = im.unsqueeze(0)
- if im.shape[2] % stride or im.shape[3] % stride:
- raise ValueError(s)
- if im.max() > 1.0:
- LOGGER.warning(f'WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. '
- f'Dividing input by 255.')
- im = im.float() / 255.0
- return im
- def __iter__(self):
- """Returns an iterator object."""
- self.count = 0
- return self
- def __next__(self):
- """Return next item in the iterator."""
- if self.count == 1:
- raise StopIteration
- self.count += 1
- return self.paths, self.im0, None, ''
- def __len__(self):
- """Returns the batch size."""
- return self.bs
- def autocast_list(source):
- """
- Merges a list of source of different types into a list of numpy arrays or PIL images
- """
- files = []
- for im in source:
- if isinstance(im, (str, Path)): # filename or uri
- files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im))
- elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image
- files.append(im)
- else:
- raise TypeError(f'type {type(im).__name__} is not a supported Ultralytics prediction source type. \n'
- f'See https://docs.ultralytics.com/modes/predict for supported source types.')
- return files
- LOADERS = LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots # tuple
- def get_best_youtube_url(url, use_pafy=False):
- """
- Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
- This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest
- quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream.
- Args:
- url (str): The URL of the YouTube video.
- use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package.
- Returns:
- (str): The URL of the best quality MP4 video stream, or None if no suitable stream is found.
- """
- if use_pafy:
- check_requirements(('pafy', 'youtube_dl==2020.12.2'))
- import pafy # noqa
- return pafy.new(url).getbestvideo(preftype='mp4').url
- else:
- check_requirements('yt-dlp')
- import yt_dlp
- with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
- info_dict = ydl.extract_info(url, download=False) # extract info
- for f in reversed(info_dict.get('formats', [])): # reversed because best is usually last
- # Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size
- good_size = (f.get('width') or 0) >= 1920 or (f.get('height') or 0) >= 1080
- if good_size and f['vcodec'] != 'none' and f['acodec'] == 'none' and f['ext'] == 'mp4':
- return f.get('url')
|