123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- import argparse
- import cv2
- import numpy as np
- import onnxruntime as ort
- import torch
- from ultralytics.utils import ASSETS, yaml_load
- from ultralytics.utils.checks import check_requirements, check_yaml
- class Yolov8:
- def __init__(self, onnx_model, input_image, confidence_thres, iou_thres):
- """
- Initializes an instance of the Yolov8 class.
- Args:
- onnx_model: Path to the ONNX model.
- input_image: Path to the input image.
- confidence_thres: Confidence threshold for filtering detections.
- iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
- """
- self.onnx_model = onnx_model
- self.input_image = input_image
- self.confidence_thres = confidence_thres
- self.iou_thres = iou_thres
- # Load the class names from the COCO dataset
- self.classes = yaml_load(check_yaml('coco128.yaml'))['names']
- # Generate a color palette for the classes
- self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
- def draw_detections(self, img, box, score, class_id):
- """
- Draws bounding boxes and labels on the input image based on the detected objects.
- Args:
- img: The input image to draw detections on.
- box: Detected bounding box.
- score: Corresponding detection score.
- class_id: Class ID for the detected object.
- Returns:
- None
- """
- # Extract the coordinates of the bounding box
- x1, y1, w, h = box
- # Retrieve the color for the class ID
- color = self.color_palette[class_id]
- # Draw the bounding box on the image
- cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
- # Create the label text with class name and score
- label = f'{self.classes[class_id]}: {score:.2f}'
- # Calculate the dimensions of the label text
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- # Calculate the position of the label text
- label_x = x1
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
- # Draw a filled rectangle as the background for the label text
- cv2.rectangle(img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color,
- cv2.FILLED)
- # Draw the label text on the image
- cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
- def preprocess(self):
- """
- Preprocesses the input image before performing inference.
- Returns:
- image_data: Preprocessed image data ready for inference.
- """
- # Read the input image using OpenCV
- self.img = cv2.imread(self.input_image)
- # Get the height and width of the input image
- self.img_height, self.img_width = self.img.shape[:2]
- # Convert the image color space from BGR to RGB
- img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
- # Resize the image to match the input shape
- img = cv2.resize(img, (self.input_width, self.input_height))
- # Normalize the image data by dividing it by 255.0
- image_data = np.array(img) / 255.0
- # Transpose the image to have the channel dimension as the first dimension
- image_data = np.transpose(image_data, (2, 0, 1)) # Channel first
- # Expand the dimensions of the image data to match the expected input shape
- image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
- # Return the preprocessed image data
- return image_data
- def postprocess(self, input_image, output):
- """
- Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
- Args:
- input_image (numpy.ndarray): The input image.
- output (numpy.ndarray): The output of the model.
- Returns:
- numpy.ndarray: The input image with detections drawn on it.
- """
- # Transpose and squeeze the output to match the expected shape
- outputs = np.transpose(np.squeeze(output[0]))
- # Get the number of rows in the outputs array
- rows = outputs.shape[0]
- # Lists to store the bounding boxes, scores, and class IDs of the detections
- boxes = []
- scores = []
- class_ids = []
- # Calculate the scaling factors for the bounding box coordinates
- x_factor = self.img_width / self.input_width
- y_factor = self.img_height / self.input_height
- # Iterate over each row in the outputs array
- for i in range(rows):
- # Extract the class scores from the current row
- classes_scores = outputs[i][4:]
- # Find the maximum score among the class scores
- max_score = np.amax(classes_scores)
- # If the maximum score is above the confidence threshold
- if max_score >= self.confidence_thres:
- # Get the class ID with the highest score
- class_id = np.argmax(classes_scores)
- # Extract the bounding box coordinates from the current row
- x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
- # Calculate the scaled coordinates of the bounding box
- left = int((x - w / 2) * x_factor)
- top = int((y - h / 2) * y_factor)
- width = int(w * x_factor)
- height = int(h * y_factor)
- # Add the class ID, score, and box coordinates to the respective lists
- class_ids.append(class_id)
- scores.append(max_score)
- boxes.append([left, top, width, height])
- # Apply non-maximum suppression to filter out overlapping bounding boxes
- indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
- # Iterate over the selected indices after non-maximum suppression
- for i in indices:
- # Get the box, score, and class ID corresponding to the index
- box = boxes[i]
- score = scores[i]
- class_id = class_ids[i]
- # Draw the detection on the input image
- self.draw_detections(input_image, box, score, class_id)
- # Return the modified input image
- return input_image
- def main(self):
- """
- Performs inference using an ONNX model and returns the output image with drawn detections.
- Returns:
- output_img: The output image with drawn detections.
- """
- # Create an inference session using the ONNX model and specify execution providers
- session = ort.InferenceSession(self.onnx_model, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
- # Get the model inputs
- model_inputs = session.get_inputs()
- # Store the shape of the input for later use
- input_shape = model_inputs[0].shape
- self.input_width = input_shape[2]
- self.input_height = input_shape[3]
- # Preprocess the image data
- img_data = self.preprocess()
- # Run inference using the preprocessed image data
- outputs = session.run(None, {model_inputs[0].name: img_data})
- # Perform post-processing on the outputs to obtain output image.
- return self.postprocess(self.img, outputs) # output image
- if __name__ == '__main__':
- # Create an argument parser to handle command-line arguments
- parser = argparse.ArgumentParser()
- parser.add_argument('--model', type=str, default='yolov8n.onnx', help='Input your ONNX model.')
- parser.add_argument('--img', type=str, default=str(ASSETS / 'bus.jpg'), help='Path to input image.')
- parser.add_argument('--conf-thres', type=float, default=0.5, help='Confidence threshold')
- parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
- args = parser.parse_args()
- # Check the requirements and select the appropriate backend (CPU or GPU)
- check_requirements('onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime')
- # Create an instance of the Yolov8 class with the specified arguments
- detection = Yolov8(args.model, args.img, args.conf_thres, args.iou_thres)
- # Perform object detection and obtain the output image
- output_image = detection.main()
- # Display the output image in a window
- cv2.namedWindow('Output', cv2.WINDOW_NORMAL)
- cv2.imshow('Output', output_image)
- # Wait for a key press to exit
- cv2.waitKey(0)
|