12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import math
- import numpy as np
- from ._convert_np import make_np
- from ._utils import make_grid
- from tensorboard.compat import tf
- from tensorboard.plugins.projector.projector_config_pb2 import EmbeddingInfo
- _HAS_GFILE_JOIN = hasattr(tf.io.gfile, "join")
- def _gfile_join(a, b):
- # The join API is different between tensorboard's TF stub and TF:
- # https://github.com/tensorflow/tensorboard/issues/6080
- # We need to try both because `tf` may point to either the stub or the real TF.
- if _HAS_GFILE_JOIN:
- return tf.io.gfile.join(a, b)
- else:
- fs = tf.io.gfile.get_filesystem(a)
- return fs.join(a, b)
- def make_tsv(metadata, save_path, metadata_header=None):
- if not metadata_header:
- metadata = [str(x) for x in metadata]
- else:
- assert len(metadata_header) == len(
- metadata[0]
- ), "len of header must be equal to the number of columns in metadata"
- metadata = ["\t".join(str(e) for e in l) for l in [metadata_header] + metadata]
- metadata_bytes = tf.compat.as_bytes("\n".join(metadata) + "\n")
- with tf.io.gfile.GFile(_gfile_join(save_path, "metadata.tsv"), "wb") as f:
- f.write(metadata_bytes)
- # https://github.com/tensorflow/tensorboard/issues/44 image label will be squared
- def make_sprite(label_img, save_path):
- from PIL import Image
- from io import BytesIO
- # this ensures the sprite image has correct dimension as described in
- # https://www.tensorflow.org/get_started/embedding_viz
- nrow = int(math.ceil((label_img.size(0)) ** 0.5))
- arranged_img_CHW = make_grid(make_np(label_img), ncols=nrow)
- # augment images so that #images equals nrow*nrow
- arranged_augment_square_HWC = np.zeros(
- (arranged_img_CHW.shape[2], arranged_img_CHW.shape[2], 3)
- )
- arranged_img_HWC = arranged_img_CHW.transpose(1, 2, 0) # chw -> hwc
- arranged_augment_square_HWC[: arranged_img_HWC.shape[0], :, :] = arranged_img_HWC
- im = Image.fromarray(np.uint8((arranged_augment_square_HWC * 255).clip(0, 255)))
- with BytesIO() as buf:
- im.save(buf, format="PNG")
- im_bytes = buf.getvalue()
- with tf.io.gfile.GFile(_gfile_join(save_path, "sprite.png"), "wb") as f:
- f.write(im_bytes)
- def get_embedding_info(metadata, label_img, subdir, global_step, tag):
- info = EmbeddingInfo()
- info.tensor_name = "{}:{}".format(tag, str(global_step).zfill(5))
- info.tensor_path = _gfile_join(subdir, "tensors.tsv")
- if metadata is not None:
- info.metadata_path = _gfile_join(subdir, "metadata.tsv")
- if label_img is not None:
- info.sprite.image_path = _gfile_join(subdir, "sprite.png")
- info.sprite.single_image_dim.extend([label_img.size(3), label_img.size(2)])
- return info
- def write_pbtxt(save_path, contents):
- config_path = _gfile_join(save_path, "projector_config.pbtxt")
- with tf.io.gfile.GFile(config_path, "wb") as f:
- f.write(tf.compat.as_bytes(contents))
- def make_mat(matlist, save_path):
- with tf.io.gfile.GFile(_gfile_join(save_path, "tensors.tsv"), "wb") as f:
- for x in matlist:
- x = [str(i.item()) for i in x]
- f.write(tf.compat.as_bytes("\t".join(x) + "\n"))
|