123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- import math
- from typing import TypeVar, Optional, Iterator
- import torch
- from . import Sampler, Dataset
- import torch.distributed as dist
- __all__ = ["DistributedSampler", ]
- T_co = TypeVar('T_co', covariant=True)
- class DistributedSampler(Sampler[T_co]):
- r"""Sampler that restricts data loading to a subset of the dataset.
- It is especially useful in conjunction with
- :class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each
- process can pass a :class:`~torch.utils.data.DistributedSampler` instance as a
- :class:`~torch.utils.data.DataLoader` sampler, and load a subset of the
- original dataset that is exclusive to it.
- .. note::
- Dataset is assumed to be of constant size and that any instance of it always
- returns the same elements in the same order.
- Args:
- dataset: Dataset used for sampling.
- num_replicas (int, optional): Number of processes participating in
- distributed training. By default, :attr:`world_size` is retrieved from the
- current distributed group.
- rank (int, optional): Rank of the current process within :attr:`num_replicas`.
- By default, :attr:`rank` is retrieved from the current distributed
- group.
- shuffle (bool, optional): If ``True`` (default), sampler will shuffle the
- indices.
- seed (int, optional): random seed used to shuffle the sampler if
- :attr:`shuffle=True`. This number should be identical across all
- processes in the distributed group. Default: ``0``.
- drop_last (bool, optional): if ``True``, then the sampler will drop the
- tail of the data to make it evenly divisible across the number of
- replicas. If ``False``, the sampler will add extra indices to make
- the data evenly divisible across the replicas. Default: ``False``.
- .. warning::
- In distributed mode, calling the :meth:`set_epoch` method at
- the beginning of each epoch **before** creating the :class:`DataLoader` iterator
- is necessary to make shuffling work properly across multiple epochs. Otherwise,
- the same ordering will be always used.
- Example::
- >>> # xdoctest: +SKIP
- >>> sampler = DistributedSampler(dataset) if is_distributed else None
- >>> loader = DataLoader(dataset, shuffle=(sampler is None),
- ... sampler=sampler)
- >>> for epoch in range(start_epoch, n_epochs):
- ... if is_distributed:
- ... sampler.set_epoch(epoch)
- ... train(loader)
- """
- def __init__(self, dataset: Dataset, num_replicas: Optional[int] = None,
- rank: Optional[int] = None, shuffle: bool = True,
- seed: int = 0, drop_last: bool = False) -> None:
- if num_replicas is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- num_replicas = dist.get_world_size()
- if rank is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- rank = dist.get_rank()
- if rank >= num_replicas or rank < 0:
- raise ValueError(
- "Invalid rank {}, rank should be in the interval"
- " [0, {}]".format(rank, num_replicas - 1))
- self.dataset = dataset
- self.num_replicas = num_replicas
- self.rank = rank
- self.epoch = 0
- self.drop_last = drop_last
- # If the dataset length is evenly divisible by # of replicas, then there
- # is no need to drop any data, since the dataset will be split equally.
- if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
- # Split to nearest available length that is evenly divisible.
- # This is to ensure each rank receives the same amount of data when
- # using this Sampler.
- self.num_samples = math.ceil(
- (len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
- )
- else:
- self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type]
- self.total_size = self.num_samples * self.num_replicas
- self.shuffle = shuffle
- self.seed = seed
- def __iter__(self) -> Iterator[T_co]:
- if self.shuffle:
- # deterministically shuffle based on epoch and seed
- g = torch.Generator()
- g.manual_seed(self.seed + self.epoch)
- indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
- else:
- indices = list(range(len(self.dataset))) # type: ignore[arg-type]
- if not self.drop_last:
- # add extra samples to make it evenly divisible
- padding_size = self.total_size - len(indices)
- if padding_size <= len(indices):
- indices += indices[:padding_size]
- else:
- indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
- else:
- # remove tail of data to make it evenly divisible.
- indices = indices[:self.total_size]
- assert len(indices) == self.total_size
- # subsample
- indices = indices[self.rank:self.total_size:self.num_replicas]
- assert len(indices) == self.num_samples
- return iter(indices)
- def __len__(self) -> int:
- return self.num_samples
- def set_epoch(self, epoch: int) -> None:
- r"""
- Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
- use a different random ordering for each epoch. Otherwise, the next iteration of this
- sampler will yield the same ordering.
- Args:
- epoch (int): Epoch number.
- """
- self.epoch = epoch
|