123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- """Example use of Timer and op fuzzers to measure kernel performance.
- $ python -m examples.op_benchmark
- """
- import numpy as np
- import torch
- from torch.utils.benchmark import Timer
- from torch.utils.benchmark.op_fuzzers.binary import BinaryOpFuzzer
- from torch.utils.benchmark.op_fuzzers.unary import UnaryOpFuzzer
- _MEASURE_TIME = 1.0
- def assert_dicts_equal(dict_0, dict_1):
- """Builtin dict comparison will not compare numpy arrays.
- e.g.
- x = {"a": np.ones((2, 1))}
- x == x # Raises ValueError
- """
- assert set(dict_0.keys()) == set(dict_0.keys())
- assert all(np.all(v == dict_1[k]) for k, v in dict_0.items() if k != "dtype")
- def run(n, stmt, fuzzer_cls):
- float_iter = fuzzer_cls(seed=0, dtype=torch.float32).take(n)
- int_iter = fuzzer_cls(seed=0, dtype=torch.int32).take(n)
- raw_results = []
- for i, (float_values, int_values) in enumerate(zip(float_iter, int_iter)):
- float_tensors, float_tensor_params, float_params = float_values
- int_tensors, int_tensor_params, int_params = int_values
- # This benchmark assumes that the two fuzzers generate identically
- # sized and strided Tensors, since the same seed is used.
- assert_dicts_equal(float_params, int_params)
- assert_dicts_equal(float_tensor_params["x"], int_tensor_params["x"])
- float_measurement, int_measurement = [
- Timer(
- stmt,
- globals=tensors,
- ).blocked_autorange(min_run_time=_MEASURE_TIME)
- for tensors in (float_tensors, int_tensors)
- ]
- descriptions = []
- for name in float_tensors:
- shape_str = "(" + ", ".join([
- f"2 ** {int(np.log2(i))}"
- if 2 ** int(np.log2(i)) == i and i > 1
- else str(i)
- for i in float_tensors[name].shape
- ]) + ")"
- order = float_tensor_params[name]["order"]
- order_str = ("" if all(order == np.arange(len(order))) else str(tuple(order)))
- steps = float_tensor_params[name]["steps"]
- steps_str = str(steps) if sum(steps) > len(steps) else ""
- descriptions.append((name, shape_str, order_str, steps_str))
- raw_results.append((float_measurement, int_measurement, descriptions))
- print(f"\r{i + 1} / {n}", end="")
- print()
- parsed_results, name_len, shape_len, order_len, steps_len = [], 0, 0, 0, 0
- for float_measurement, int_measurement, descriptions in raw_results:
- t_float = float_measurement.median * 1e6
- t_int = int_measurement.median * 1e6
- rel_diff = abs(t_float - t_int) / (t_float + t_int) * 2
- parsed_results.append((t_float, t_int, rel_diff, descriptions))
- for name, shape, order, steps in descriptions:
- name_len = max(name_len, len(name))
- shape_len = max(shape_len, len(shape))
- order_len = max(order_len, len(order))
- steps_len = max(steps_len, len(steps))
- parsed_results.sort(key=lambda x: x[2])
- print(f"stmt: {stmt}")
- print(f" diff faster{'':>17}{' ' * name_len} ", end="")
- print(f"{'shape'.ljust(shape_len)}{'':>16}{'order'.ljust(order_len)}", end="")
- print(f" steps\n{'-' * 100}")
- for results, spacer in [(parsed_results[:10], "..."), (parsed_results[-10:], "")]:
- for t_float, t_int, rel_diff, descriptions in results:
- time_str = [f"{rel_diff * 100:>4.1f}% {'int' if t_int < t_float else 'float':<20}"]
- time_str.extend(["".ljust(len(time_str[0])) for _ in descriptions[:-1]])
- for t_str, (name, shape, order, steps) in zip(time_str, descriptions):
- name = f"{name}:".ljust(name_len + 1)
- shape = shape.ljust(shape_len + 10)
- order = order.ljust(order_len)
- print(f"{t_str} {name} {shape}| {order} | {steps}")
- print(spacer)
- def main():
- run(n=100, stmt="torch.median(x, dim=0)", fuzzer_cls=UnaryOpFuzzer)
- run(n=100, stmt="torch.square(x)", fuzzer_cls=UnaryOpFuzzer)
- run(n=100, stmt="x + y", fuzzer_cls=BinaryOpFuzzer)
- if __name__ == "__main__":
- main()
|