123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798 |
- # -*- coding: utf-8 -*-
- from typing import Optional, Iterable
- import torch
- from math import sqrt
- from torch import Tensor
- from torch._torch_docs import factory_common_args, parse_kwargs, merge_dicts
- __all__ = [
- 'bartlett',
- 'blackman',
- 'cosine',
- 'exponential',
- 'gaussian',
- 'general_cosine',
- 'general_hamming',
- 'hamming',
- 'hann',
- 'kaiser',
- 'nuttall',
- ]
- window_common_args = merge_dicts(
- parse_kwargs(
- """
- M (int): the length of the window.
- In other words, the number of points of the returned window.
- sym (bool, optional): If `False`, returns a periodic window suitable for use in spectral analysis.
- If `True`, returns a symmetric window suitable for use in filter design. Default: `True`.
- """
- ),
- factory_common_args,
- {
- "normalization": "The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "
- ":attr:`M` is even and :attr:`sym` is `True`.",
- }
- )
- def _add_docstr(*args):
- r"""Adds docstrings to a given decorated function.
- Specially useful when then docstrings needs string interpolation, e.g., with
- str.format().
- REMARK: Do not use this function if the docstring doesn't need string
- interpolation, just write a conventional docstring.
- Args:
- args (str):
- """
- def decorator(o):
- o.__doc__ = "".join(args)
- return o
- return decorator
- def _window_function_checks(function_name: str, M: int, dtype: torch.dtype, layout: torch.layout) -> None:
- r"""Performs common checks for all the defined windows.
- This function should be called before computing any window.
- Args:
- function_name (str): name of the window function.
- M (int): length of the window.
- dtype (:class:`torch.dtype`): the desired data type of returned tensor.
- layout (:class:`torch.layout`): the desired layout of returned tensor.
- """
- if M < 0:
- raise ValueError(f'{function_name} requires non-negative window length, got M={M}')
- if layout is not torch.strided:
- raise ValueError(f'{function_name} is implemented for strided tensors only, got: {layout}')
- if not (dtype in [torch.float32, torch.float64]):
- raise ValueError(f'{function_name} expects float32 or float64 dtypes, got: {dtype}')
- @_add_docstr(
- r"""
- Computes a window with an exponential waveform.
- Also known as Poisson window.
- The exponential window is defined as follows:
- .. math::
- w_n = \exp{\left(-\frac{|n - c|}{\tau}\right)}
- where `c` is the ``center`` of the window.
- """,
- r"""
- {normalization}
- Args:
- {M}
- Keyword args:
- center (float, optional): where the center of the window will be located.
- Default: `M / 2` if `sym` is `False`, else `(M - 1) / 2`.
- tau (float, optional): the decay value.
- Tau is generally associated with a percentage, that means, that the value should
- vary within the interval (0, 100]. If tau is 100, it is considered the uniform window.
- Default: 1.0.
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric exponential window of size 10 and with a decay value of 1.0.
- >>> # The center will be at (M - 1) / 2, where M is 10.
- >>> torch.signal.windows.exponential(10)
- tensor([0.0111, 0.0302, 0.0821, 0.2231, 0.6065, 0.6065, 0.2231, 0.0821, 0.0302, 0.0111])
- >>> # Generates a periodic exponential window and decay factor equal to .5
- >>> torch.signal.windows.exponential(10, sym=False,tau=.5)
- tensor([4.5400e-05, 3.3546e-04, 2.4788e-03, 1.8316e-02, 1.3534e-01, 1.0000e+00, 1.3534e-01, 1.8316e-02, 2.4788e-03, 3.3546e-04])
- """.format(
- **window_common_args
- ),
- )
- def exponential(
- M: int,
- *,
- center: Optional[float] = None,
- tau: float = 1.0,
- sym: bool = True,
- dtype: Optional[torch.dtype] = None,
- layout: torch.layout = torch.strided,
- device: Optional[torch.device] = None,
- requires_grad: bool = False
- ) -> Tensor:
- if dtype is None:
- dtype = torch.get_default_dtype()
- _window_function_checks('exponential', M, dtype, layout)
- if tau <= 0:
- raise ValueError(f'Tau must be positive, got: {tau} instead.')
- if sym and center is not None:
- raise ValueError('Center must be None for symmetric windows')
- if M == 0:
- return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- if center is None:
- center = (M if not sym and M > 1 else M - 1) / 2.0
- constant = 1 / tau
- k = torch.linspace(start=-center * constant,
- end=(-center + (M - 1)) * constant,
- steps=M,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
- return torch.exp(-torch.abs(k))
- @_add_docstr(
- r"""
- Computes a window with a simple cosine waveform.
- Also known as the sine window.
- The cosine window is defined as follows:
- .. math::
- w_n = \cos{\left(\frac{\pi n}{M} - \frac{\pi}{2}\right)} = \sin{\left(\frac{\pi n}{M}\right)}
- """,
- r"""
- {normalization}
- Args:
- {M}
- Keyword args:
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric cosine window.
- >>> torch.signal.windows.cosine(10)
- tensor([0.1564, 0.4540, 0.7071, 0.8910, 0.9877, 0.9877, 0.8910, 0.7071, 0.4540, 0.1564])
- >>> # Generates a periodic cosine window.
- >>> torch.signal.windows.cosine(10, sym=False)
- tensor([0.1423, 0.4154, 0.6549, 0.8413, 0.9595, 1.0000, 0.9595, 0.8413, 0.6549, 0.4154])
- """.format(
- **window_common_args,
- ),
- )
- def cosine(
- M: int,
- *,
- sym: bool = True,
- dtype: Optional[torch.dtype] = None,
- layout: torch.layout = torch.strided,
- device: Optional[torch.device] = None,
- requires_grad: bool = False
- ) -> Tensor:
- if dtype is None:
- dtype = torch.get_default_dtype()
- _window_function_checks('cosine', M, dtype, layout)
- if M == 0:
- return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- start = 0.5
- constant = torch.pi / (M + 1 if not sym and M > 1 else M)
- k = torch.linspace(start=start * constant,
- end=(start + (M - 1)) * constant,
- steps=M,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
- return torch.sin(k)
- @_add_docstr(
- r"""
- Computes a window with a gaussian waveform.
- The gaussian window is defined as follows:
- .. math::
- w_n = \exp{\left(-\left(\frac{n}{2\sigma}\right)^2\right)}
- """,
- r"""
- {normalization}
- Args:
- {M}
- Keyword args:
- std (float, optional): the standard deviation of the gaussian. It controls how narrow or wide the window is.
- Default: 1.0.
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
- >>> torch.signal.windows.gaussian(10)
- tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])
- >>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
- >>> torch.signal.windows.gaussian(10, sym=False,std=0.9)
- tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
- """.format(
- **window_common_args,
- ),
- )
- def gaussian(
- M: int,
- *,
- std: float = 1.0,
- sym: bool = True,
- dtype: Optional[torch.dtype] = None,
- layout: torch.layout = torch.strided,
- device: Optional[torch.device] = None,
- requires_grad: bool = False
- ) -> Tensor:
- if dtype is None:
- dtype = torch.get_default_dtype()
- _window_function_checks('gaussian', M, dtype, layout)
- if std <= 0:
- raise ValueError(f'Standard deviation must be positive, got: {std} instead.')
- if M == 0:
- return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- start = -(M if not sym and M > 1 else M - 1) / 2.0
- constant = 1 / (std * sqrt(2))
- k = torch.linspace(start=start * constant,
- end=(start + (M - 1)) * constant,
- steps=M,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
- return torch.exp(-k ** 2)
- @_add_docstr(
- r"""
- Computes the Kaiser window.
- The Kaiser window is defined as follows:
- .. math::
- w_n = I_0 \left( \beta \sqrt{1 - \left( {\frac{n - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta )
- where ``I_0`` is the zeroth order modified Bessel function of the first kind (see :func:`torch.special.i0`), and
- ``N = M - 1 if sym else M``.
- """,
- r"""
- {normalization}
- Args:
- {M}
- Keyword args:
- beta (float, optional): shape parameter for the window. Must be non-negative. Default: 12.0
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
- >>> torch.signal.windows.kaiser(5)
- tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])
- >>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
- >>> torch.signal.windows.kaiser(5, sym=False,std=0.9)
- tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
- """.format(
- **window_common_args,
- ),
- )
- def kaiser(
- M: int,
- *,
- beta: float = 12.0,
- sym: bool = True,
- dtype: Optional[torch.dtype] = None,
- layout: torch.layout = torch.strided,
- device: Optional[torch.device] = None,
- requires_grad: bool = False
- ) -> Tensor:
- if dtype is None:
- dtype = torch.get_default_dtype()
- _window_function_checks('kaiser', M, dtype, layout)
- if beta < 0:
- raise ValueError(f'beta must be non-negative, got: {beta} instead.')
- if M == 0:
- return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- if M == 1:
- return torch.ones((1,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- start = -beta
- constant = 2.0 * beta / (M if not sym else M - 1)
- k = torch.linspace(start=start,
- end=start + (M - 1) * constant,
- steps=M,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
- return torch.i0(torch.sqrt(beta * beta - torch.pow(k, 2))) / torch.i0(torch.tensor(beta, device=device))
- @_add_docstr(
- r"""
- Computes the Hamming window.
- The Hamming window is defined as follows:
- .. math::
- w_n = \alpha - \beta\ \cos \left( \frac{2 \pi n}{M - 1} \right)
- """,
- r"""
- {normalization}
- Arguments:
- {M}
- Keyword args:
- {sym}
- alpha (float, optional): The coefficient :math:`\alpha` in the equation above.
- beta (float, optional): The coefficient :math:`\beta` in the equation above.
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric Hamming window.
- >>> torch.signal.windows.hamming(10)
- tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])
- >>> # Generates a periodic Hamming window.
- >>> torch.signal.windows.hamming(10, sym=False)
- tensor([0.0800, 0.1679, 0.3979, 0.6821, 0.9121, 1.0000, 0.9121, 0.6821, 0.3979, 0.1679])
- """.format(
- **window_common_args
- ),
- )
- def hamming(M: int,
- *,
- sym: bool = True,
- dtype: torch.dtype = None,
- layout: torch.layout = torch.strided,
- device: torch.device = None,
- requires_grad: bool = False) -> Tensor:
- return general_hamming(M, sym=sym, dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- @_add_docstr(
- r"""
- Computes the Hann window.
- The Hann window is defined as follows:
- .. math::
- w_n = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{M - 1} \right)\right] =
- \sin^2 \left( \frac{\pi n}{M - 1} \right)
- """,
- r"""
- {normalization}
- Arguments:
- {M}
- Keyword args:
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric Hann window.
- >>> torch.signal.windows.hann(10)
- tensor([0.0000, 0.1170, 0.4132, 0.7500, 0.9698, 0.9698, 0.7500, 0.4132, 0.1170, 0.0000])
- >>> # Generates a periodic Hann window.
- >>> torch.signal.windows.hann(10, sym=False)
- tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
- """.format(
- **window_common_args
- ),
- )
- def hann(M: int,
- *,
- sym: bool = True,
- dtype: torch.dtype = None,
- layout: torch.layout = torch.strided,
- device: torch.device = None,
- requires_grad: bool = False) -> Tensor:
- return general_hamming(M,
- alpha=0.5,
- sym=sym,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
- @_add_docstr(
- r"""
- Computes the Blackman window.
- The Blackman window is defined as follows:
- .. math::
- w_n = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{M - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{M - 1} \right)
- """,
- r"""
- {normalization}
- Arguments:
- {M}
- Keyword args:
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric Blackman window.
- >>> torch.signal.windows.blackman(5)
- tensor([-1.4901e-08, 3.4000e-01, 1.0000e+00, 3.4000e-01, -1.4901e-08])
- >>> # Generates a periodic Blackman window.
- >>> torch.signal.windows.blackman(5, sym=False)
- tensor([-1.4901e-08, 2.0077e-01, 8.4923e-01, 8.4923e-01, 2.0077e-01])
- """.format(
- **window_common_args
- ),
- )
- def blackman(M: int,
- *,
- sym: bool = True,
- dtype: torch.dtype = None,
- layout: torch.layout = torch.strided,
- device: torch.device = None,
- requires_grad: bool = False) -> Tensor:
- if dtype is None:
- dtype = torch.get_default_dtype()
- _window_function_checks('blackman', M, dtype, layout)
- return general_cosine(M, a=[0.42, 0.5, 0.08], sym=sym, dtype=dtype, layout=layout, device=device,
- requires_grad=requires_grad)
- @_add_docstr(
- r"""
- Computes the Bartlett window.
- The Bartlett window is defined as follows:
- .. math::
- w_n = 1 - \left| \frac{2n}{M - 1} - 1 \right| = \begin{cases}
- \frac{2n}{M - 1} & \text{if } 0 \leq n \leq \frac{M - 1}{2} \\
- 2 - \frac{2n}{M - 1} & \text{if } \frac{M - 1}{2} < n < M \\ \end{cases}
- """,
- r"""
- {normalization}
- Arguments:
- {M}
- Keyword args:
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric Bartlett window.
- >>> torch.signal.windows.bartlett(10)
- tensor([0.0000, 0.2222, 0.4444, 0.6667, 0.8889, 0.8889, 0.6667, 0.4444, 0.2222, 0.0000])
- >>> # Generates a periodic Bartlett window.
- >>> torch.signal.windows.bartlett(10, sym=False)
- tensor([0.0000, 0.2000, 0.4000, 0.6000, 0.8000, 1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
- """.format(
- **window_common_args
- ),
- )
- def bartlett(M: int,
- *,
- sym: bool = True,
- dtype: torch.dtype = None,
- layout: torch.layout = torch.strided,
- device: torch.device = None,
- requires_grad: bool = False) -> Tensor:
- if dtype is None:
- dtype = torch.get_default_dtype()
- _window_function_checks('bartlett', M, dtype, layout)
- if M == 0:
- return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- if M == 1:
- return torch.ones((1,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- start = -1
- constant = 2 / (M if not sym else M - 1)
- k = torch.linspace(start=start,
- end=start + (M - 1) * constant,
- steps=M,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
- return 1 - torch.abs(k)
- @_add_docstr(
- r"""
- Computes the general cosine window.
- The general cosine window is defined as follows:
- .. math::
- w_n = \sum^{M-1}_{i=0} (-1)^i a_i \cos{ \left( \frac{2 \pi i n}{M - 1}\right)}
- """,
- r"""
- {normalization}
- Arguments:
- {M}
- Keyword args:
- a (Iterable): the coefficients associated to each of the cosine functions.
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric general cosine window with 3 coefficients.
- >>> torch.signal.windows.general_cosine(10, a=[0.46, 0.23, 0.31], sym=True)
- tensor([0.5400, 0.3376, 0.1288, 0.4200, 0.9136, 0.9136, 0.4200, 0.1288, 0.3376, 0.5400])
- >>> # Generates a periodic general cosine window wit 2 coefficients.
- >>> torch.signal.windows.general_cosine(10, a=[0.5, 1 - 0.5], sym=False)
- tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
- """.format(
- **window_common_args
- ),
- )
- def general_cosine(M, *,
- a: Iterable,
- sym: bool = True,
- dtype: torch.dtype = None,
- layout: torch.layout = torch.strided,
- device: torch.device = None,
- requires_grad: bool = False) -> Tensor:
- if dtype is None:
- dtype = torch.get_default_dtype()
- _window_function_checks('general_cosine', M, dtype, layout)
- if M == 0:
- return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- if M == 1:
- return torch.ones((1,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
- if not isinstance(a, Iterable):
- raise TypeError("Coefficients must be a list/tuple")
- if not a:
- raise ValueError("Coefficients cannot be empty")
- constant = 2 * torch.pi / (M if not sym else M - 1)
- k = torch.linspace(start=0,
- end=(M - 1) * constant,
- steps=M,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
- a_i = torch.tensor([(-1) ** i * w for i, w in enumerate(a)], device=device, dtype=dtype, requires_grad=requires_grad)
- i = torch.arange(a_i.shape[0], dtype=a_i.dtype, device=a_i.device, requires_grad=a_i.requires_grad)
- return (a_i.unsqueeze(-1) * torch.cos(i.unsqueeze(-1) * k)).sum(0)
- @_add_docstr(
- r"""
- Computes the general Hamming window.
- The general Hamming window is defined as follows:
- .. math::
- w_n = \alpha - (1 - \alpha) \cos{ \left( \frac{2 \pi n}{M-1} \right)}
- """,
- r"""
- {normalization}
- Arguments:
- {M}
- Keyword args:
- alpha (float, optional): the window coefficient. Default: 0.54.
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- Examples::
- >>> # Generates a symmetric Hamming window with the general Hamming window.
- >>> torch.signal.windows.general_hamming(10, sym=True)
- tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])
- >>> # Generates a periodic Hann window with the general Hamming window.
- >>> torch.signal.windows.general_hamming(10, alpha=0.5, sym=False)
- tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
- """.format(
- **window_common_args
- ),
- )
- def general_hamming(M,
- *,
- alpha: float = 0.54,
- sym: bool = True,
- dtype: torch.dtype = None,
- layout: torch.layout = torch.strided,
- device: torch.device = None,
- requires_grad: bool = False) -> Tensor:
- return general_cosine(M,
- a=[alpha, 1. - alpha],
- sym=sym,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
- @_add_docstr(
- r"""
- Computes the minimum 4-term Blackman-Harris window according to Nuttall.
- .. math::
- w_n = 1 - 0.36358 \cos{(z_n)} + 0.48917 \cos{(2z_n)} - 0.13659 \cos{(3z_n)} + 0.01064 \cos{(4z_n)}
- where ``z_n = 2 π n/ M``.
- """,
- """
- {normalization}
- Arguments:
- {M}
- Keyword args:
- {sym}
- {dtype}
- {layout}
- {device}
- {requires_grad}
- References::
- - A. Nuttall, “Some windows with very good sidelobe behavior,”
- IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 1, pp. 84-91,
- Feb 1981. https://doi.org/10.1109/TASSP.1981.1163506
- - Heinzel G. et al., “Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
- including a comprehensive list of window functions and some new flat-top windows”,
- February 15, 2002 https://holometer.fnal.gov/GH_FFT.pdf
- Examples::
- >>> # Generates a symmetric Nutall window.
- >>> torch.signal.windows.general_hamming(5, sym=True)
- tensor([3.6280e-04, 2.2698e-01, 1.0000e+00, 2.2698e-01, 3.6280e-04])
- >>> # Generates a periodic Nuttall window.
- >>> torch.signal.windows.general_hamming(5, sym=False)
- tensor([3.6280e-04, 1.1052e-01, 7.9826e-01, 7.9826e-01, 1.1052e-01])
- """.format(
- **window_common_args
- ),
- )
- def nuttall(
- M: int,
- *,
- sym: bool = True,
- dtype: Optional[torch.dtype] = None,
- layout: torch.layout = torch.strided,
- device: Optional[torch.device] = None,
- requires_grad: bool = False
- ) -> Tensor:
- return general_cosine(M,
- a=[0.3635819, 0.4891775, 0.1365995, 0.0106411],
- sym=sym,
- dtype=dtype,
- layout=layout,
- device=device,
- requires_grad=requires_grad)
|