123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- import contextlib
- from typing import Generator
- import warnings
- from torch._C import default_generator
- import torch
- def set_rng_state(new_state: torch.Tensor) -> None:
- r"""Sets the random number generator state.
- .. note: This function only works for CPU. For CUDA, please use
- torch.manual_seed(seed), which works for both CPU and CUDA.
- Args:
- new_state (torch.ByteTensor): The desired state
- """
- default_generator.set_state(new_state)
- def get_rng_state() -> torch.Tensor:
- r"""Returns the random number generator state as a `torch.ByteTensor`."""
- return default_generator.get_state()
- def manual_seed(seed) -> torch._C.Generator:
- r"""Sets the seed for generating random numbers. Returns a
- `torch.Generator` object.
- Args:
- seed (int): The desired seed. Value must be within the inclusive range
- `[-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]`. Otherwise, a RuntimeError
- is raised. Negative inputs are remapped to positive values with the formula
- `0xffff_ffff_ffff_ffff + seed`.
- """
- seed = int(seed)
- import torch.cuda
- if not torch.cuda._is_in_bad_fork():
- torch.cuda.manual_seed_all(seed)
- import torch.mps
- if not torch.mps._is_in_bad_fork():
- torch.mps.manual_seed(seed)
- return default_generator.manual_seed(seed)
- def seed() -> int:
- r"""Sets the seed for generating random numbers to a non-deterministic
- random number. Returns a 64 bit number used to seed the RNG.
- """
- seed = default_generator.seed()
- import torch.cuda
- if not torch.cuda._is_in_bad_fork():
- torch.cuda.manual_seed_all(seed)
- import torch.mps
- if not torch.mps._is_in_bad_fork():
- torch.mps.manual_seed(seed)
- return seed
- def initial_seed() -> int:
- r"""Returns the initial seed for generating random numbers as a
- Python `long`.
- """
- return default_generator.initial_seed()
- _fork_rng_warned_already = False
- @contextlib.contextmanager
- def fork_rng(devices=None, enabled=True, _caller="fork_rng", _devices_kw="devices") -> Generator:
- """
- Forks the RNG, so that when you return, the RNG is reset
- to the state that it was previously in.
- Args:
- devices (iterable of CUDA IDs): CUDA devices for which to fork
- the RNG. CPU RNG state is always forked. By default, :meth:`fork_rng` operates
- on all devices, but will emit a warning if your machine has a lot
- of devices, since this function will run very slowly in that case.
- If you explicitly specify devices, this warning will be suppressed
- enabled (bool): if ``False``, the RNG is not forked. This is a convenience
- argument for easily disabling the context manager without having
- to delete it and unindent your Python code under it.
- """
- import torch.cuda
- global _fork_rng_warned_already
- # Internal arguments:
- # _caller: the function which called fork_rng, which the user used
- # _devices_kw: the devices keyword of _caller
- if not enabled:
- yield
- return
- if devices is None:
- num_devices = torch.cuda.device_count()
- if num_devices > 1 and not _fork_rng_warned_already:
- warnings.warn(
- ("CUDA reports that you have {num_devices} available devices, and you "
- "have used {caller} without explicitly specifying which devices are being used. "
- "For safety, we initialize *every* CUDA device by default, which "
- "can be quite slow if you have a lot of GPUs. If you know that you are only "
- "making use of a few CUDA devices, set the environment variable CUDA_VISIBLE_DEVICES "
- "or the '{devices_kw}' keyword argument of {caller} with the set of devices "
- "you are actually using. For example, if you are using CPU only, "
- "set CUDA_VISIBLE_DEVICES= or devices=[]; if you are using "
- "GPU 0 only, set CUDA_VISIBLE_DEVICES=0 or devices=[0]. To initialize "
- "all devices and suppress this warning, set the '{devices_kw}' keyword argument "
- "to `range(torch.cuda.device_count())`."
- ).format(num_devices=num_devices, caller=_caller, devices_kw=_devices_kw))
- _fork_rng_warned_already = True
- devices = list(range(num_devices))
- else:
- # Protect against user passing us a generator; we need to traverse this
- # multiple times but a generator will be exhausted upon first traversal
- devices = list(devices)
- cpu_rng_state = torch.get_rng_state()
- gpu_rng_states = []
- for device in devices:
- gpu_rng_states.append(torch.cuda.get_rng_state(device))
- try:
- yield
- finally:
- torch.set_rng_state(cpu_rng_state)
- for device, gpu_rng_state in zip(devices, gpu_rng_states):
- torch.cuda.set_rng_state(gpu_rng_state, device)
|