123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- import torch
- from typing import Optional
- class SobolEngine:
- r"""
- The :class:`torch.quasirandom.SobolEngine` is an engine for generating
- (scrambled) Sobol sequences. Sobol sequences are an example of low
- discrepancy quasi-random sequences.
- This implementation of an engine for Sobol sequences is capable of
- sampling sequences up to a maximum dimension of 21201. It uses direction
- numbers from https://web.maths.unsw.edu.au/~fkuo/sobol/ obtained using the
- search criterion D(6) up to the dimension 21201. This is the recommended
- choice by the authors.
- References:
- - Art B. Owen. Scrambling Sobol and Niederreiter-Xing points.
- Journal of Complexity, 14(4):466-489, December 1998.
- - I. M. Sobol. The distribution of points in a cube and the accurate
- evaluation of integrals.
- Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.
- Args:
- dimension (Int): The dimensionality of the sequence to be drawn
- scramble (bool, optional): Setting this to ``True`` will produce
- scrambled Sobol sequences. Scrambling is
- capable of producing better Sobol
- sequences. Default: ``False``.
- seed (Int, optional): This is the seed for the scrambling. The seed
- of the random number generator is set to this,
- if specified. Otherwise, it uses a random seed.
- Default: ``None``
- Examples::
- >>> # xdoctest: +SKIP("unseeded random state")
- >>> soboleng = torch.quasirandom.SobolEngine(dimension=5)
- >>> soboleng.draw(3)
- tensor([[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
- [0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
- [0.7500, 0.2500, 0.2500, 0.2500, 0.7500]])
- """
- MAXBIT = 30
- MAXDIM = 21201
- def __init__(self, dimension, scramble=False, seed=None):
- if dimension > self.MAXDIM or dimension < 1:
- raise ValueError("Supported range of dimensionality "
- f"for SobolEngine is [1, {self.MAXDIM}]")
- self.seed = seed
- self.scramble = scramble
- self.dimension = dimension
- cpu = torch.device("cpu")
- self.sobolstate = torch.zeros(dimension, self.MAXBIT, device=cpu, dtype=torch.long)
- torch._sobol_engine_initialize_state_(self.sobolstate, self.dimension)
- if not self.scramble:
- self.shift = torch.zeros(self.dimension, device=cpu, dtype=torch.long)
- else:
- self._scramble()
- self.quasi = self.shift.clone(memory_format=torch.contiguous_format)
- self._first_point = (self.quasi / 2 ** self.MAXBIT).reshape(1, -1)
- self.num_generated = 0
- def draw(self, n: int = 1, out: Optional[torch.Tensor] = None,
- dtype: torch.dtype = torch.float32) -> torch.Tensor:
- r"""
- Function to draw a sequence of :attr:`n` points from a Sobol sequence.
- Note that the samples are dependent on the previous samples. The size
- of the result is :math:`(n, dimension)`.
- Args:
- n (Int, optional): The length of sequence of points to draw.
- Default: 1
- out (Tensor, optional): The output tensor
- dtype (:class:`torch.dtype`, optional): the desired data type of the
- returned tensor.
- Default: ``torch.float32``
- """
- if self.num_generated == 0:
- if n == 1:
- result = self._first_point.to(dtype)
- else:
- result, self.quasi = torch._sobol_engine_draw(
- self.quasi, n - 1, self.sobolstate, self.dimension, self.num_generated, dtype=dtype,
- )
- result = torch.cat((self._first_point, result), dim=-2)
- else:
- result, self.quasi = torch._sobol_engine_draw(
- self.quasi, n, self.sobolstate, self.dimension, self.num_generated - 1, dtype=dtype,
- )
- self.num_generated += n
- if out is not None:
- out.resize_as_(result).copy_(result)
- return out
- return result
- def draw_base2(self, m: int, out: Optional[torch.Tensor] = None,
- dtype: torch.dtype = torch.float32) -> torch.Tensor:
- r"""
- Function to draw a sequence of :attr:`2**m` points from a Sobol sequence.
- Note that the samples are dependent on the previous samples. The size
- of the result is :math:`(2**m, dimension)`.
- Args:
- m (Int): The (base2) exponent of the number of points to draw.
- out (Tensor, optional): The output tensor
- dtype (:class:`torch.dtype`, optional): the desired data type of the
- returned tensor.
- Default: ``torch.float32``
- """
- n = 2 ** m
- total_n = self.num_generated + n
- if not (total_n & (total_n - 1) == 0):
- raise ValueError("The balance properties of Sobol' points require "
- "n to be a power of 2. {0} points have been "
- "previously generated, then: n={0}+2**{1}={2}. "
- "If you still want to do this, please use "
- "'SobolEngine.draw()' instead."
- .format(self.num_generated, m, total_n))
- return self.draw(n=n, out=out, dtype=dtype)
- def reset(self):
- r"""
- Function to reset the ``SobolEngine`` to base state.
- """
- self.quasi.copy_(self.shift)
- self.num_generated = 0
- return self
- def fast_forward(self, n):
- r"""
- Function to fast-forward the state of the ``SobolEngine`` by
- :attr:`n` steps. This is equivalent to drawing :attr:`n` samples
- without using the samples.
- Args:
- n (Int): The number of steps to fast-forward by.
- """
- if self.num_generated == 0:
- torch._sobol_engine_ff_(self.quasi, n - 1, self.sobolstate, self.dimension, self.num_generated)
- else:
- torch._sobol_engine_ff_(self.quasi, n, self.sobolstate, self.dimension, self.num_generated - 1)
- self.num_generated += n
- return self
- def _scramble(self):
- g: Optional[torch.Generator] = None
- if self.seed is not None:
- g = torch.Generator()
- g.manual_seed(self.seed)
- cpu = torch.device("cpu")
- # Generate shift vector
- shift_ints = torch.randint(2, (self.dimension, self.MAXBIT), device=cpu, generator=g)
- self.shift = torch.mv(shift_ints, torch.pow(2, torch.arange(0, self.MAXBIT, device=cpu)))
- # Generate lower triangular matrices (stacked across dimensions)
- ltm_dims = (self.dimension, self.MAXBIT, self.MAXBIT)
- ltm = torch.randint(2, ltm_dims, device=cpu, generator=g).tril()
- torch._sobol_engine_scramble_(self.sobolstate, ltm, self.dimension)
- def __repr__(self):
- fmt_string = [f'dimension={self.dimension}']
- if self.scramble:
- fmt_string += ['scramble=True']
- if self.seed is not None:
- fmt_string += [f'seed={self.seed}']
- return self.__class__.__name__ + '(' + ', '.join(fmt_string) + ')'
|