1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- from .quantize import * # noqa: F403
- from .observer import * # noqa: F403
- from .qconfig import * # noqa: F403
- from .fake_quantize import * # noqa: F403
- from .fuse_modules import fuse_modules
- from .stubs import * # noqa: F403
- from .quant_type import * # noqa: F403
- from .quantize_jit import * # noqa: F403
- # from .quantize_fx import *
- from .quantization_mappings import * # noqa: F403
- from .fuser_method_mappings import * # noqa: F403
- def default_eval_fn(model, calib_data):
- r"""
- Default evaluation function takes a torch.utils.data.Dataset or a list of
- input Tensors and run the model on the dataset
- """
- for data, target in calib_data:
- model(data)
- __all__ = [
- 'QuantWrapper', 'QuantStub', 'DeQuantStub',
- # Top level API for eager mode quantization
- 'quantize', 'quantize_dynamic', 'quantize_qat',
- 'prepare', 'convert', 'prepare_qat',
- # Top level API for graph mode quantization on TorchScript
- 'quantize_jit', 'quantize_dynamic_jit', '_prepare_ondevice_dynamic_jit',
- '_convert_ondevice_dynamic_jit', '_quantize_ondevice_dynamic_jit',
- # Top level API for graph mode quantization on GraphModule(torch.fx)
- # 'fuse_fx', 'quantize_fx', # TODO: add quantize_dynamic_fx
- # 'prepare_fx', 'prepare_dynamic_fx', 'convert_fx',
- 'QuantType', # quantization type
- # custom module APIs
- 'get_default_static_quant_module_mappings', 'get_static_quant_module_class',
- 'get_default_dynamic_quant_module_mappings',
- 'get_default_qat_module_mappings',
- 'get_default_qconfig_propagation_list',
- 'get_default_compare_output_module_list',
- 'get_quantized_operator',
- 'get_fuser_method',
- # Sub functions for `prepare` and `swap_module`
- 'propagate_qconfig_', 'add_quant_dequant', 'swap_module',
- 'default_eval_fn',
- # Observers
- 'ObserverBase', 'WeightObserver', 'HistogramObserver',
- 'observer', 'default_observer',
- 'default_weight_observer', 'default_placeholder_observer',
- 'default_per_channel_weight_observer',
- # FakeQuantize (for qat)
- 'default_fake_quant', 'default_weight_fake_quant',
- 'default_fixed_qparams_range_neg1to1_fake_quant',
- 'default_fixed_qparams_range_0to1_fake_quant',
- 'default_per_channel_weight_fake_quant',
- 'default_histogram_fake_quant',
- # QConfig
- 'QConfig', 'default_qconfig', 'default_dynamic_qconfig', 'float16_dynamic_qconfig',
- 'float_qparams_weight_only_qconfig',
- # QAT utilities
- 'default_qat_qconfig', 'prepare_qat', 'quantize_qat',
- # module transformations
- 'fuse_modules',
- ]
|