123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364 |
- import math
- import torch
- from torch import Tensor
- from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _dispatch_sqrt, _stack_if_compiling,
- _default_to_fused_or_foreach, _differentiable_doc, _foreach_doc)
- from typing import List, Optional
- from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
- __all__ = ["RAdam", "radam"]
- class RAdam(Optimizer):
- def __init__(
- self,
- params,
- lr=1e-3,
- betas=(0.9, 0.999),
- eps=1e-8,
- weight_decay=0,
- *,
- foreach: Optional[bool] = None,
- differentiable: bool = False,
- ):
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= eps:
- raise ValueError("Invalid epsilon value: {}".format(eps))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
- if not 0.0 <= weight_decay:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- defaults = dict(
- lr=lr,
- betas=betas,
- eps=eps,
- weight_decay=weight_decay,
- foreach=foreach,
- differentiable=differentiable,
- )
- super().__init__(params, defaults)
- def __setstate__(self, state):
- super().__setstate__(state)
- for group in self.param_groups:
- group.setdefault("foreach", None)
- group.setdefault("differentiable", False)
- state_values = list(self.state.values())
- step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
- state_values[0]["step"]
- )
- if not step_is_tensor:
- for s in state_values:
- s["step"] = torch.tensor(float(s["step"]))
- def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps):
- for p in group["params"]:
- if p.grad is not None:
- params_with_grad.append(p)
- if p.grad.is_sparse:
- raise RuntimeError("RAdam does not support sparse gradients")
- grads.append(p.grad)
- state = self.state[p]
- # Lazy state initialization
- if len(state) == 0:
- state["step"] = torch.tensor(0.0)
- # Exponential moving average of gradient values
- state["exp_avg"] = torch.zeros_like(
- p, memory_format=torch.preserve_format
- )
- # Exponential moving average of squared gradient values
- state["exp_avg_sq"] = torch.zeros_like(
- p, memory_format=torch.preserve_format
- )
- exp_avgs.append(state["exp_avg"])
- exp_avg_sqs.append(state["exp_avg_sq"])
- state_steps.append(state["step"])
- @_use_grad_for_differentiable
- def step(self, closure=None):
- """Performs a single optimization step.
- Args:
- closure (Callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- with torch.enable_grad():
- loss = closure()
- for group in self.param_groups:
- params_with_grad = []
- grads = []
- exp_avgs = []
- exp_avg_sqs = []
- state_steps = []
- beta1, beta2 = group["betas"]
- self._init_group(group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps)
- radam(
- params_with_grad,
- grads,
- exp_avgs,
- exp_avg_sqs,
- state_steps,
- beta1=beta1,
- beta2=beta2,
- lr=group["lr"],
- weight_decay=group["weight_decay"],
- eps=group["eps"],
- foreach=group["foreach"],
- differentiable=group["differentiable"],
- )
- return loss
- RAdam.__doc__ = r"""Implements RAdam algorithm.
- .. math::
- \begin{aligned}
- &\rule{110mm}{0.4pt} \\
- &\textbf{input} : \gamma \text{ (lr)}, \: \beta_1, \beta_2
- \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
- \lambda \text{ (weightdecay)}, \\
- &\hspace{13mm} \epsilon \text{ (epsilon)} \\
- &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
- v_0 \leftarrow 0 \text{ ( second moment)}, \\
- &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1 \\[-1.ex]
- &\rule{110mm}{0.4pt} \\
- &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
- &\hspace{6mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
- &\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\
- &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
- &\hspace{6mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
- &\hspace{6mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
- &\hspace{6mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\
- &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
- 2 t \beta^t_2 /\big(1-\beta_2^t \big) \\[0.1.ex]
- &\hspace{6mm}\textbf{if} \: \rho_t > 5 \\
- &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon } \\
- &\hspace{12mm} r_t \leftarrow
- \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
- &\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} r_t l_t \\
- &\hspace{6mm}\textbf{else} \\
- &\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} \\
- &\rule{110mm}{0.4pt} \\[-1.ex]
- &\bf{return} \: \theta_t \\[-1.ex]
- &\rule{110mm}{0.4pt} \\[-1.ex]
- \end{aligned}
- For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.
- This implementation uses the same weight_decay implementation as Adam (were the weight_decay is applied
- to the gradient) and not the one from AdamW (were weight_decay is applied to the update). This
- is different from the `author's implementation`_.
- """ + r"""
- Args:
- params (iterable): iterable of parameters to optimize or dicts defining
- parameter groups
- lr (float, optional): learning rate (default: 1e-3)
- betas (Tuple[float, float], optional): coefficients used for computing
- running averages of gradient and its square (default: (0.9, 0.999))
- eps (float, optional): term added to the denominator to improve
- numerical stability (default: 1e-8)
- weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
- {foreach}
- {differentiable}
- .. _On the variance of the adaptive learning rate and beyond:
- https://arxiv.org/abs/1908.03265
- .. _author's implementation:
- https://github.com/LiyuanLucasLiu/RAdam
- """.format(foreach=_foreach_doc, differentiable=_differentiable_doc)
- def radam(
- params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_avg_sqs: List[Tensor],
- state_steps: List[Tensor],
- # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
- # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
- foreach: Optional[bool] = None,
- differentiable: bool = False,
- *,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- eps: float,
- ):
- r"""Functional API that performs RAdam algorithm computation.
- See :class:`~torch.optim.RAdam` for details.
- """
- if not all(isinstance(t, torch.Tensor) for t in state_steps):
- raise RuntimeError(
- "API has changed, `state_steps` argument must contain a list of singleton tensors"
- )
- if foreach is None:
- _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
- if foreach and torch.jit.is_scripting():
- raise RuntimeError("torch.jit.script not supported with foreach optimizers")
- if foreach and not torch.jit.is_scripting():
- func = _multi_tensor_radam
- else:
- func = _single_tensor_radam
- func(
- params,
- grads,
- exp_avgs,
- exp_avg_sqs,
- state_steps,
- beta1=beta1,
- beta2=beta2,
- lr=lr,
- weight_decay=weight_decay,
- eps=eps,
- differentiable=differentiable,
- )
- def _single_tensor_radam(
- params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_avg_sqs: List[Tensor],
- state_steps: List[Tensor],
- *,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- eps: float,
- differentiable: bool,
- ):
- for i, param in enumerate(params):
- grad = grads[i]
- exp_avg = exp_avgs[i]
- exp_avg_sq = exp_avg_sqs[i]
- step_t = state_steps[i]
- # update step
- step_t += 1
- step = _get_value(step_t)
- bias_correction1 = 1 - beta1 ** step
- bias_correction2 = 1 - beta2 ** step
- if weight_decay != 0:
- grad = grad.add(param, alpha=weight_decay)
- # Decay the first and second moment running average coefficient
- exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
- exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
- # correcting bias for the first moving moment
- bias_corrected_exp_avg = exp_avg / bias_correction1
- # maximum length of the approximated SMA
- rho_inf = 2 / (1 - beta2) - 1
- # compute the length of the approximated SMA
- rho_t = rho_inf - 2 * step * (beta2 ** step) / bias_correction2
- if rho_t > 5.0:
- # Compute the variance rectification term and update parameters accordingly
- rect = math.sqrt(
- (rho_t - 4)
- * (rho_t - 2)
- * rho_inf
- / ((rho_inf - 4) * (rho_inf - 2) * rho_t)
- )
- exp_avg_sq_sqrt = exp_avg_sq.sqrt()
- if differentiable:
- exp_avg_sq_sqrt = exp_avg_sq_sqrt.add(eps)
- else:
- exp_avg_sq_sqrt = exp_avg_sq_sqrt.add_(eps)
- adaptive_lr = math.sqrt(bias_correction2) / exp_avg_sq_sqrt
- param.add_(bias_corrected_exp_avg * lr * adaptive_lr * rect, alpha=-1.0)
- else:
- param.add_(bias_corrected_exp_avg * lr, alpha=-1.0)
- def _multi_tensor_radam(
- params: List[Tensor],
- grads: List[Tensor],
- exp_avgs: List[Tensor],
- exp_avg_sqs: List[Tensor],
- state_steps: List[Tensor],
- *,
- beta1: float,
- beta2: float,
- lr: float,
- weight_decay: float,
- eps: float,
- differentiable: bool,
- ):
- if len(params) == 0:
- return
- assert not differentiable, "_foreach ops don't support autograd"
- grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, state_steps])
- for grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs, grouped_state_steps in grouped_tensors.values():
- # Update steps
- torch._foreach_add_(grouped_state_steps, 1)
- # maximum length of the approximated SMA
- rho_inf = 2 / (1 - beta2) - 1
- # compute the length of the approximated SMA
- rho_t_list = [rho_inf - 2 * _get_value(step) * (beta2 ** _get_value(step)) /
- (1 - beta2 ** _get_value(step)) for step in grouped_state_steps]
- bias_correction1 = [1 - beta1 ** _get_value(step) for step in grouped_state_steps]
- bias_correction2 = [1 - beta2 ** _get_value(step) for step in grouped_state_steps]
- if weight_decay != 0:
- grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
- # Decay the first and second moment running average coefficient
- torch._foreach_mul_(grouped_exp_avgs, beta1)
- torch._foreach_add_(grouped_exp_avgs, grouped_grads, alpha=1 - beta1)
- torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
- torch._foreach_addcmul_(grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2)
- rect = [
- _dispatch_sqrt(
- (rho_t - 4)
- * (rho_t - 2)
- * rho_inf
- / ((rho_inf - 4) * (rho_inf - 2) * rho_t)
- )
- if rho_t > 5
- else 0
- for rho_t in rho_t_list
- ]
- unrectified = [0 if rect > 0 else 1.0 for rect in rect]
- exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs)
- torch._foreach_add_(exp_avg_sq_sqrt, eps)
- bias_correction_sqrt = [_dispatch_sqrt(bc) for bc in bias_correction2]
- denom = torch._foreach_div(exp_avg_sq_sqrt, bias_correction_sqrt)
- step_size = _stack_if_compiling([(lr * rect / bc) * -1 for rect, bc in zip(rect, bias_correction1)])
- torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, denom, step_size)
- denom = [torch.ones_like(exp_av, memory_format=torch.preserve_format) for exp_av in grouped_exp_avgs]
- step_size = _stack_if_compiling([(lr * rect / bc) * -1 for rect, bc in zip(unrectified, bias_correction1)])
- torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, denom, step_size)
|