123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727 |
- """
- GENERATED CODE - DO NOT EDIT DIRECTLY
- This file is generated by gen_diagnostics.py.
- See tools/onnx/gen_diagnostics.py for more information.
- Diagnostic rules for PyTorch ONNX export.
- """
- import dataclasses
- from typing import Tuple
- # flake8: noqa
- from torch.onnx._internal.diagnostics import infra
- """
- GENERATED CODE - DO NOT EDIT DIRECTLY
- The purpose of generating a class for each rule is to override the `format_message`
- method to provide more details in the signature about the format arguments.
- """
- class _NodeMissingOnnxShapeInference(infra.Rule):
- """Node is missing ONNX shape inference."""
- def format_message(self, op_name) -> str: # type: ignore[override]
- """Returns the formatted default message of this Rule.
- Message template: 'The shape inference of {op_name} type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.'
- """
- return self.message_default_template.format(op_name=op_name)
- def format( # type: ignore[override]
- self, level: infra.Level, op_name
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: 'The shape inference of {op_name} type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.'
- """
- return self, level, self.format_message(op_name=op_name)
- class _MissingCustomSymbolicFunction(infra.Rule):
- """Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX."""
- def format_message(self, op_name) -> str: # type: ignore[override]
- """Returns the formatted default message of this Rule.
- Message template: 'ONNX export failed on an operator with unrecognized namespace {op_name}. If you are trying to export a custom operator, make sure you registered it with the right domain and version.'
- """
- return self.message_default_template.format(op_name=op_name)
- def format( # type: ignore[override]
- self, level: infra.Level, op_name
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: 'ONNX export failed on an operator with unrecognized namespace {op_name}. If you are trying to export a custom operator, make sure you registered it with the right domain and version.'
- """
- return self, level, self.format_message(op_name=op_name)
- class _MissingStandardSymbolicFunction(infra.Rule):
- """Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX."""
- def format_message( # type: ignore[override]
- self, op_name, opset_version, issue_url
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub: {issue_url}."
- """
- return self.message_default_template.format(
- op_name=op_name, opset_version=opset_version, issue_url=issue_url
- )
- def format( # type: ignore[override]
- self, level: infra.Level, op_name, opset_version, issue_url
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub: {issue_url}."
- """
- return (
- self,
- level,
- self.format_message(
- op_name=op_name, opset_version=opset_version, issue_url=issue_url
- ),
- )
- class _OperatorSupportedInNewerOpsetVersion(infra.Rule):
- """Operator is supported in newer opset version."""
- def format_message( # type: ignore[override]
- self, op_name, opset_version, supported_opset_version
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Support for this operator was added in version {supported_opset_version}, try exporting with this version."
- """
- return self.message_default_template.format(
- op_name=op_name,
- opset_version=opset_version,
- supported_opset_version=supported_opset_version,
- )
- def format( # type: ignore[override]
- self, level: infra.Level, op_name, opset_version, supported_opset_version
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Support for this operator was added in version {supported_opset_version}, try exporting with this version."
- """
- return (
- self,
- level,
- self.format_message(
- op_name=op_name,
- opset_version=opset_version,
- supported_opset_version=supported_opset_version,
- ),
- )
- class _FxTracerSuccess(infra.Rule):
- """FX Tracer succeeded."""
- def format_message(self, fn_name, tracer_name) -> str: # type: ignore[override]
- """Returns the formatted default message of this Rule.
- Message template: "The callable '{fn_name}' is successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'."
- """
- return self.message_default_template.format(
- fn_name=fn_name, tracer_name=tracer_name
- )
- def format( # type: ignore[override]
- self, level: infra.Level, fn_name, tracer_name
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: "The callable '{fn_name}' is successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'."
- """
- return (
- self,
- level,
- self.format_message(fn_name=fn_name, tracer_name=tracer_name),
- )
- class _FxTracerFailure(infra.Rule):
- """FX Tracer failed."""
- def format_message( # type: ignore[override]
- self, fn_name, tracer_name, explanation
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: "The callable '{fn_name}' is not successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'.\n{explanation}"
- """
- return self.message_default_template.format(
- fn_name=fn_name, tracer_name=tracer_name, explanation=explanation
- )
- def format( # type: ignore[override]
- self, level: infra.Level, fn_name, tracer_name, explanation
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: "The callable '{fn_name}' is not successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'.\n{explanation}"
- """
- return (
- self,
- level,
- self.format_message(
- fn_name=fn_name, tracer_name=tracer_name, explanation=explanation
- ),
- )
- class _FxFrontendAotautograd(infra.Rule):
- """FX Tracer succeeded."""
- def format_message(self, fn_name, tracer_name) -> str: # type: ignore[override]
- """Returns the formatted default message of this Rule.
- Message template: "The callable '{fn_name}' is successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'."
- """
- return self.message_default_template.format(
- fn_name=fn_name, tracer_name=tracer_name
- )
- def format( # type: ignore[override]
- self, level: infra.Level, fn_name, tracer_name
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: "The callable '{fn_name}' is successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'."
- """
- return (
- self,
- level,
- self.format_message(fn_name=fn_name, tracer_name=tracer_name),
- )
- class _FxPassConvertNegToSigmoid(infra.Rule):
- """FX pass converting torch.neg to torch.sigmoid."""
- def format_message( # type: ignore[override]
- self,
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: "Running 'convert-neg-to-sigmoid' pass on 'torch.fx.GraphModule'."
- """
- return self.message_default_template.format()
- def format( # type: ignore[override]
- self,
- level: infra.Level,
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: "Running 'convert-neg-to-sigmoid' pass on 'torch.fx.GraphModule'."
- """
- return self, level, self.format_message()
- class _FxIrAddNode(infra.Rule):
- """ToDo, experimenting diagnostics, placeholder text."""
- def format_message( # type: ignore[override]
- self,
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self.message_default_template.format()
- def format( # type: ignore[override]
- self,
- level: infra.Level,
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self, level, self.format_message()
- class _AtenlibSymbolicFunction(infra.Rule):
- """Op level tracking. ToDo, experimenting diagnostics, placeholder text."""
- def format_message( # type: ignore[override]
- self,
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self.message_default_template.format()
- def format( # type: ignore[override]
- self,
- level: infra.Level,
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self, level, self.format_message()
- class _AtenlibFxToOnnx(infra.Rule):
- """Graph level tracking. Each op is a step. ToDo, experimenting diagnostics, placeholder text."""
- def format_message( # type: ignore[override]
- self,
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self.message_default_template.format()
- def format( # type: ignore[override]
- self,
- level: infra.Level,
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self, level, self.format_message()
- class _FxNodeToOnnx(infra.Rule):
- """Node level tracking. ToDo, experimenting diagnostics, placeholder text."""
- def format_message( # type: ignore[override]
- self,
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self.message_default_template.format()
- def format( # type: ignore[override]
- self,
- level: infra.Level,
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self, level, self.format_message()
- class _FxFrontendDynamoMakeFx(infra.Rule):
- """The make_fx + decomposition pass on fx graph produced from Dynamo, before ONNX export."""
- def format_message( # type: ignore[override]
- self,
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self.message_default_template.format()
- def format( # type: ignore[override]
- self,
- level: infra.Level,
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: 'ToDo, experimenting diagnostics, placeholder text.'
- """
- return self, level, self.format_message()
- class _ArgFormatTooVerbose(infra.Rule):
- """The formatted str for argument to display is too verbose."""
- def format_message( # type: ignore[override]
- self, length, length_limit, argument_type, formatter_type
- ) -> str:
- """Returns the formatted default message of this Rule.
- Message template: 'Too verbose ({length} > {length_limit}). Argument type {argument_type} for formatter {formatter_type}.'
- """
- return self.message_default_template.format(
- length=length,
- length_limit=length_limit,
- argument_type=argument_type,
- formatter_type=formatter_type,
- )
- def format( # type: ignore[override]
- self, level: infra.Level, length, length_limit, argument_type, formatter_type
- ) -> Tuple[infra.Rule, infra.Level, str]:
- """Returns a tuple of (Rule, Level, message) for this Rule.
- Message template: 'Too verbose ({length} > {length_limit}). Argument type {argument_type} for formatter {formatter_type}.'
- """
- return (
- self,
- level,
- self.format_message(
- length=length,
- length_limit=length_limit,
- argument_type=argument_type,
- formatter_type=formatter_type,
- ),
- )
- @dataclasses.dataclass
- class _POERules(infra.RuleCollection):
- node_missing_onnx_shape_inference: _NodeMissingOnnxShapeInference = dataclasses.field(
- default=_NodeMissingOnnxShapeInference.from_sarif(
- **{
- "id": "POE0001",
- "name": "node-missing-onnx-shape-inference",
- "short_description": {"text": "Node is missing ONNX shape inference."},
- "full_description": {
- "text": "Node is missing ONNX shape inference. This usually happens when the node is not valid under standard ONNX operator spec.",
- "markdown": "Node is missing ONNX shape inference.\nThis usually happens when the node is not valid under standard ONNX operator spec.\n",
- },
- "message_strings": {
- "default": {
- "text": "The shape inference of {op_name} type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """Node is missing ONNX shape inference."""
- missing_custom_symbolic_function: _MissingCustomSymbolicFunction = dataclasses.field(
- default=_MissingCustomSymbolicFunction.from_sarif(
- **{
- "id": "POE0002",
- "name": "missing-custom-symbolic-function",
- "short_description": {
- "text": "Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX."
- },
- "full_description": {
- "text": "Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX.",
- "markdown": "Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX.\n",
- },
- "message_strings": {
- "default": {
- "text": "ONNX export failed on an operator with unrecognized namespace {op_name}. If you are trying to export a custom operator, make sure you registered it with the right domain and version."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX."""
- missing_standard_symbolic_function: _MissingStandardSymbolicFunction = dataclasses.field(
- default=_MissingStandardSymbolicFunction.from_sarif(
- **{
- "id": "POE0003",
- "name": "missing-standard-symbolic-function",
- "short_description": {
- "text": "Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX."
- },
- "full_description": {
- "text": "Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX.",
- "markdown": "Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX.\n",
- },
- "message_strings": {
- "default": {
- "text": "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub: {issue_url}."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX."""
- operator_supported_in_newer_opset_version: _OperatorSupportedInNewerOpsetVersion = dataclasses.field(
- default=_OperatorSupportedInNewerOpsetVersion.from_sarif(
- **{
- "id": "POE0004",
- "name": "operator-supported-in-newer-opset-version",
- "short_description": {
- "text": "Operator is supported in newer opset version."
- },
- "full_description": {
- "text": "Operator is supported in newer opset version.",
- "markdown": "Operator is supported in newer opset version.\n\nExample:\n```python\ntorch.onnx.export(model, args, ..., opset_version=9)\n```\n",
- },
- "message_strings": {
- "default": {
- "text": "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Support for this operator was added in version {supported_opset_version}, try exporting with this version."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """Operator is supported in newer opset version."""
- fx_tracer_success: _FxTracerSuccess = dataclasses.field(
- default=_FxTracerSuccess.from_sarif(
- **{
- "id": "FXE0001",
- "name": "fx-tracer-success",
- "short_description": {"text": "FX Tracer succeeded."},
- "full_description": {
- "text": "FX Tracer succeeded. The callable is successfully traced as a 'torch.fx.GraphModule' by one of the fx tracers.",
- "markdown": "FX Tracer succeeded.\nThe callable is successfully traced as a 'torch.fx.GraphModule' by one of the fx tracers.\n",
- },
- "message_strings": {
- "default": {
- "text": "The callable '{fn_name}' is successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """FX Tracer succeeded."""
- fx_tracer_failure: _FxTracerFailure = dataclasses.field(
- default=_FxTracerFailure.from_sarif(
- **{
- "id": "FXE0002",
- "name": "fx-tracer-failure",
- "short_description": {"text": "FX Tracer failed."},
- "full_description": {
- "text": "FX Tracer failed. The callable is not successfully traced as a 'torch.fx.GraphModule'.",
- "markdown": "FX Tracer failed.\nThe callable is not successfully traced as a 'torch.fx.GraphModule'.\n",
- },
- "message_strings": {
- "default": {
- "text": "The callable '{fn_name}' is not successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'.\n{explanation}"
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """FX Tracer failed."""
- fx_frontend_aotautograd: _FxFrontendAotautograd = dataclasses.field(
- default=_FxFrontendAotautograd.from_sarif(
- **{
- "id": "FXE0003",
- "name": "fx-frontend-aotautograd",
- "short_description": {"text": "FX Tracer succeeded."},
- "full_description": {
- "text": "FX Tracer succeeded. The callable is successfully traced as a 'torch.fx.GraphModule' by one of the fx tracers.",
- "markdown": "FX Tracer succeeded.\nThe callable is successfully traced as a 'torch.fx.GraphModule' by one of the fx tracers.\n",
- },
- "message_strings": {
- "default": {
- "text": "The callable '{fn_name}' is successfully traced as a 'torch.fx.GraphModule' by '{tracer_name}'."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """FX Tracer succeeded."""
- fx_pass_convert_neg_to_sigmoid: _FxPassConvertNegToSigmoid = dataclasses.field(
- default=_FxPassConvertNegToSigmoid.from_sarif(
- **{
- "id": "FXE0004",
- "name": "fx-pass-convert-neg-to-sigmoid",
- "short_description": {
- "text": "FX pass converting torch.neg to torch.sigmoid."
- },
- "full_description": {
- "text": "A 'fx.Interpreter' based pass to convert all 'torch.neg' calls to 'torch.sigmoid' for a given 'torch.fx.GraphModule' object.",
- "markdown": "A 'fx.Interpreter' based pass to convert all 'torch.neg' calls to 'torch.sigmoid' for\na given 'torch.fx.GraphModule' object.\n",
- },
- "message_strings": {
- "default": {
- "text": "Running 'convert-neg-to-sigmoid' pass on 'torch.fx.GraphModule'."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """FX pass converting torch.neg to torch.sigmoid."""
- fx_ir_add_node: _FxIrAddNode = dataclasses.field(
- default=_FxIrAddNode.from_sarif(
- **{
- "id": "FXE0005",
- "name": "fx-ir-add-node",
- "short_description": {
- "text": "ToDo, experimenting diagnostics, placeholder text."
- },
- "full_description": {
- "text": "ToDo, experimenting diagnostics, placeholder text.",
- "markdown": "ToDo, experimenting diagnostics, placeholder text.\n",
- },
- "message_strings": {
- "default": {
- "text": "ToDo, experimenting diagnostics, placeholder text."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """ToDo, experimenting diagnostics, placeholder text."""
- atenlib_symbolic_function: _AtenlibSymbolicFunction = dataclasses.field(
- default=_AtenlibSymbolicFunction.from_sarif(
- **{
- "id": "FXE0006",
- "name": "atenlib-symbolic-function",
- "short_description": {
- "text": "Op level tracking. ToDo, experimenting diagnostics, placeholder text."
- },
- "full_description": {
- "text": "ToDo, experimenting diagnostics, placeholder text.",
- "markdown": "ToDo, experimenting diagnostics, placeholder text.\n",
- },
- "message_strings": {
- "default": {
- "text": "ToDo, experimenting diagnostics, placeholder text."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """Op level tracking. ToDo, experimenting diagnostics, placeholder text."""
- atenlib_fx_to_onnx: _AtenlibFxToOnnx = dataclasses.field(
- default=_AtenlibFxToOnnx.from_sarif(
- **{
- "id": "FXE0007",
- "name": "atenlib-fx-to-onnx",
- "short_description": {
- "text": "Graph level tracking. Each op is a step. ToDo, experimenting diagnostics, placeholder text."
- },
- "full_description": {
- "text": "ToDo, experimenting diagnostics, placeholder text.",
- "markdown": "ToDo, experimenting diagnostics, placeholder text.\n",
- },
- "message_strings": {
- "default": {
- "text": "ToDo, experimenting diagnostics, placeholder text."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """Graph level tracking. Each op is a step. ToDo, experimenting diagnostics, placeholder text."""
- fx_node_to_onnx: _FxNodeToOnnx = dataclasses.field(
- default=_FxNodeToOnnx.from_sarif(
- **{
- "id": "FXE0008",
- "name": "fx-node-to-onnx",
- "short_description": {
- "text": "Node level tracking. ToDo, experimenting diagnostics, placeholder text."
- },
- "full_description": {
- "text": "ToDo, experimenting diagnostics, placeholder text.",
- "markdown": "ToDo, experimenting diagnostics, placeholder text.\n",
- },
- "message_strings": {
- "default": {
- "text": "ToDo, experimenting diagnostics, placeholder text."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """Node level tracking. ToDo, experimenting diagnostics, placeholder text."""
- fx_frontend_dynamo_make_fx: _FxFrontendDynamoMakeFx = dataclasses.field(
- default=_FxFrontendDynamoMakeFx.from_sarif(
- **{
- "id": "FXE0009",
- "name": "fx-frontend-dynamo-make-fx",
- "short_description": {
- "text": "The make_fx + decomposition pass on fx graph produced from Dynamo, before ONNX export."
- },
- "full_description": {
- "text": "ToDo, experimenting diagnostics, placeholder text.",
- "markdown": "ToDo, experimenting diagnostics, placeholder text.\n",
- },
- "message_strings": {
- "default": {
- "text": "ToDo, experimenting diagnostics, placeholder text."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """The make_fx + decomposition pass on fx graph produced from Dynamo, before ONNX export."""
- arg_format_too_verbose: _ArgFormatTooVerbose = dataclasses.field(
- default=_ArgFormatTooVerbose.from_sarif(
- **{
- "id": "DIAGSYS0001",
- "name": "arg-format-too-verbose",
- "short_description": {
- "text": "The formatted str for argument to display is too verbose."
- },
- "full_description": {
- "text": "ToDo, experimenting diagnostics, placeholder text.",
- "markdown": "ToDo, experimenting diagnostics, placeholder text.\n",
- },
- "message_strings": {
- "default": {
- "text": "Too verbose ({length} > {length_limit}). Argument type {argument_type} for formatter {formatter_type}."
- }
- },
- "help_uri": None,
- "properties": {"deprecated": False, "tags": []},
- }
- ),
- init=False,
- )
- """The formatted str for argument to display is too verbose."""
- rules = _POERules()
|