1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- import copy
- import torch
- def fuse_conv_bn_eval(conv, bn, transpose=False):
- assert(not (conv.training or bn.training)), "Fusion only for eval!"
- fused_conv = copy.deepcopy(conv)
- fused_conv.weight, fused_conv.bias = \
- fuse_conv_bn_weights(fused_conv.weight, fused_conv.bias,
- bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias, transpose)
- return fused_conv
- def fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b, transpose=False):
- if conv_b is None:
- conv_b = torch.zeros_like(bn_rm)
- if bn_w is None:
- bn_w = torch.ones_like(bn_rm)
- if bn_b is None:
- bn_b = torch.zeros_like(bn_rm)
- bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps)
- if transpose:
- shape = [1, -1] + [1] * (len(conv_w.shape) - 2)
- else:
- shape = [-1, 1] + [1] * (len(conv_w.shape) - 2)
- fused_conv_w = conv_w * (bn_w * bn_var_rsqrt).reshape(shape)
- fused_conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b
- return torch.nn.Parameter(fused_conv_w, conv_w.requires_grad), torch.nn.Parameter(fused_conv_b, conv_b.requires_grad)
- def fuse_linear_bn_eval(linear, bn):
- assert(not (linear.training or bn.training)), "Fusion only for eval!"
- fused_linear = copy.deepcopy(linear)
- fused_linear.weight, fused_linear.bias = fuse_linear_bn_weights(
- fused_linear.weight, fused_linear.bias,
- bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias)
- return fused_linear
- def fuse_linear_bn_weights(linear_w, linear_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
- if linear_b is None:
- linear_b = torch.zeros_like(bn_rm)
- bn_scale = bn_w * torch.rsqrt(bn_rv + bn_eps)
- fused_w = linear_w * bn_scale.unsqueeze(-1)
- fused_b = (linear_b - bn_rm) * bn_scale + bn_b
- return torch.nn.Parameter(fused_w, linear_w.requires_grad), torch.nn.Parameter(fused_b, linear_b.requires_grad)
|