123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- from .module import Module
- from typing import Tuple, Union
- from torch import Tensor
- from torch.types import _size
- __all__ = ['Flatten', 'Unflatten']
- class Flatten(Module):
- r"""
- Flattens a contiguous range of dims into a tensor. For use with :class:`~nn.Sequential`.
- Shape:
- - Input: :math:`(*, S_{\text{start}},..., S_{i}, ..., S_{\text{end}}, *)`,'
- where :math:`S_{i}` is the size at dimension :math:`i` and :math:`*` means any
- number of dimensions including none.
- - Output: :math:`(*, \prod_{i=\text{start}}^{\text{end}} S_{i}, *)`.
- Args:
- start_dim: first dim to flatten (default = 1).
- end_dim: last dim to flatten (default = -1).
- Examples::
- >>> input = torch.randn(32, 1, 5, 5)
- >>> # With default parameters
- >>> m = nn.Flatten()
- >>> output = m(input)
- >>> output.size()
- torch.Size([32, 25])
- >>> # With non-default parameters
- >>> m = nn.Flatten(0, 2)
- >>> output = m(input)
- >>> output.size()
- torch.Size([160, 5])
- """
- __constants__ = ['start_dim', 'end_dim']
- start_dim: int
- end_dim: int
- def __init__(self, start_dim: int = 1, end_dim: int = -1) -> None:
- super().__init__()
- self.start_dim = start_dim
- self.end_dim = end_dim
- def forward(self, input: Tensor) -> Tensor:
- return input.flatten(self.start_dim, self.end_dim)
- def extra_repr(self) -> str:
- return 'start_dim={}, end_dim={}'.format(
- self.start_dim, self.end_dim
- )
- class Unflatten(Module):
- r"""
- Unflattens a tensor dim expanding it to a desired shape. For use with :class:`~nn.Sequential`.
- * :attr:`dim` specifies the dimension of the input tensor to be unflattened, and it can
- be either `int` or `str` when `Tensor` or `NamedTensor` is used, respectively.
- * :attr:`unflattened_size` is the new shape of the unflattened dimension of the tensor and it can be
- a `tuple` of ints or a `list` of ints or `torch.Size` for `Tensor` input; a `NamedShape`
- (tuple of `(name, size)` tuples) for `NamedTensor` input.
- Shape:
- - Input: :math:`(*, S_{\text{dim}}, *)`, where :math:`S_{\text{dim}}` is the size at
- dimension :attr:`dim` and :math:`*` means any number of dimensions including none.
- - Output: :math:`(*, U_1, ..., U_n, *)`, where :math:`U` = :attr:`unflattened_size` and
- :math:`\prod_{i=1}^n U_i = S_{\text{dim}}`.
- Args:
- dim (Union[int, str]): Dimension to be unflattened
- unflattened_size (Union[torch.Size, Tuple, List, NamedShape]): New shape of the unflattened dimension
- Examples:
- >>> input = torch.randn(2, 50)
- >>> # With tuple of ints
- >>> m = nn.Sequential(
- >>> nn.Linear(50, 50),
- >>> nn.Unflatten(1, (2, 5, 5))
- >>> )
- >>> output = m(input)
- >>> output.size()
- torch.Size([2, 2, 5, 5])
- >>> # With torch.Size
- >>> m = nn.Sequential(
- >>> nn.Linear(50, 50),
- >>> nn.Unflatten(1, torch.Size([2, 5, 5]))
- >>> )
- >>> output = m(input)
- >>> output.size()
- torch.Size([2, 2, 5, 5])
- >>> # With namedshape (tuple of tuples)
- >>> input = torch.randn(2, 50, names=('N', 'features'))
- >>> unflatten = nn.Unflatten('features', (('C', 2), ('H', 5), ('W', 5)))
- >>> output = unflatten(input)
- >>> output.size()
- torch.Size([2, 2, 5, 5])
- """
- NamedShape = Tuple[Tuple[str, int]]
- __constants__ = ['dim', 'unflattened_size']
- dim: Union[int, str]
- unflattened_size: Union[_size, NamedShape]
- def __init__(self, dim: Union[int, str], unflattened_size: Union[_size, NamedShape]) -> None:
- super().__init__()
- if isinstance(dim, int):
- self._require_tuple_int(unflattened_size)
- elif isinstance(dim, str):
- self._require_tuple_tuple(unflattened_size)
- else:
- raise TypeError("invalid argument type for dim parameter")
- self.dim = dim
- self.unflattened_size = unflattened_size
- def _require_tuple_tuple(self, input):
- if (isinstance(input, tuple)):
- for idx, elem in enumerate(input):
- if not isinstance(elem, tuple):
- raise TypeError("unflattened_size must be tuple of tuples, " +
- "but found element of type {} at pos {}".format(type(elem).__name__, idx))
- return
- raise TypeError("unflattened_size must be a tuple of tuples, " +
- "but found type {}".format(type(input).__name__))
- def _require_tuple_int(self, input):
- if (isinstance(input, (tuple, list))):
- for idx, elem in enumerate(input):
- if not isinstance(elem, int):
- raise TypeError("unflattened_size must be tuple of ints, " +
- "but found element of type {} at pos {}".format(type(elem).__name__, idx))
- return
- raise TypeError("unflattened_size must be a tuple of ints, but found type {}".format(type(input).__name__))
- def forward(self, input: Tensor) -> Tensor:
- return input.unflatten(self.dim, self.unflattened_size)
- def extra_repr(self) -> str:
- return 'dim={}, unflattened_size={}'.format(self.dim, self.unflattened_size)
|