123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602 |
- # -*- coding: utf-8 -*-
- import math
- import warnings
- import torch
- from torch import Tensor
- from torch.nn.parameter import Parameter, UninitializedParameter
- from .. import functional as F
- from .. import init
- from .lazy import LazyModuleMixin
- from .module import Module
- from .utils import _single, _pair, _triple, _reverse_repeat_tuple
- from torch._torch_docs import reproducibility_notes
- from ..common_types import _size_1_t, _size_2_t, _size_3_t
- from typing import Optional, List, Tuple, Union
- __all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d',
- 'LazyConv1d', 'LazyConv2d', 'LazyConv3d', 'LazyConvTranspose1d', 'LazyConvTranspose2d',
- 'LazyConvTranspose3d']
- convolution_notes = \
- {"groups_note": r"""* :attr:`groups` controls the connections between inputs and outputs.
- :attr:`in_channels` and :attr:`out_channels` must both be divisible by
- :attr:`groups`. For example,
- * At groups=1, all inputs are convolved to all outputs.
- * At groups=2, the operation becomes equivalent to having two conv
- layers side by side, each seeing half the input channels
- and producing half the output channels, and both subsequently
- concatenated.
- * At groups= :attr:`in_channels`, each input channel is convolved with
- its own set of filters (of size
- :math:`\frac{\text{out\_channels}}{\text{in\_channels}}`).""",
- "depthwise_separable_note": r"""When `groups == in_channels` and `out_channels == K * in_channels`,
- where `K` is a positive integer, this operation is also known as a "depthwise convolution".
- In other words, for an input of size :math:`(N, C_{in}, L_{in})`,
- a depthwise convolution with a depthwise multiplier `K` can be performed with the arguments
- :math:`(C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in})`."""} # noqa: B950
- class _ConvNd(Module):
- __constants__ = ['stride', 'padding', 'dilation', 'groups',
- 'padding_mode', 'output_padding', 'in_channels',
- 'out_channels', 'kernel_size']
- __annotations__ = {'bias': Optional[torch.Tensor]}
- def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
- ...
- in_channels: int
- _reversed_padding_repeated_twice: List[int]
- out_channels: int
- kernel_size: Tuple[int, ...]
- stride: Tuple[int, ...]
- padding: Union[str, Tuple[int, ...]]
- dilation: Tuple[int, ...]
- transposed: bool
- output_padding: Tuple[int, ...]
- groups: int
- padding_mode: str
- weight: Tensor
- bias: Optional[Tensor]
- def __init__(self,
- in_channels: int,
- out_channels: int,
- kernel_size: Tuple[int, ...],
- stride: Tuple[int, ...],
- padding: Tuple[int, ...],
- dilation: Tuple[int, ...],
- transposed: bool,
- output_padding: Tuple[int, ...],
- groups: int,
- bias: bool,
- padding_mode: str,
- device=None,
- dtype=None) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__()
- if groups <= 0:
- raise ValueError('groups must be a positive integer')
- if in_channels % groups != 0:
- raise ValueError('in_channels must be divisible by groups')
- if out_channels % groups != 0:
- raise ValueError('out_channels must be divisible by groups')
- valid_padding_strings = {'same', 'valid'}
- if isinstance(padding, str):
- if padding not in valid_padding_strings:
- raise ValueError(
- "Invalid padding string {!r}, should be one of {}".format(
- padding, valid_padding_strings))
- if padding == 'same' and any(s != 1 for s in stride):
- raise ValueError("padding='same' is not supported for strided convolutions")
- valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
- if padding_mode not in valid_padding_modes:
- raise ValueError("padding_mode must be one of {}, but got padding_mode='{}'".format(
- valid_padding_modes, padding_mode))
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.kernel_size = kernel_size
- self.stride = stride
- self.padding = padding
- self.dilation = dilation
- self.transposed = transposed
- self.output_padding = output_padding
- self.groups = groups
- self.padding_mode = padding_mode
- # `_reversed_padding_repeated_twice` is the padding to be passed to
- # `F.pad` if needed (e.g., for non-zero padding types that are
- # implemented as two ops: padding + conv). `F.pad` accepts paddings in
- # reverse order than the dimension.
- if isinstance(self.padding, str):
- self._reversed_padding_repeated_twice = [0, 0] * len(kernel_size)
- if padding == 'same':
- for d, k, i in zip(dilation, kernel_size,
- range(len(kernel_size) - 1, -1, -1)):
- total_padding = d * (k - 1)
- left_pad = total_padding // 2
- self._reversed_padding_repeated_twice[2 * i] = left_pad
- self._reversed_padding_repeated_twice[2 * i + 1] = (
- total_padding - left_pad)
- else:
- self._reversed_padding_repeated_twice = _reverse_repeat_tuple(self.padding, 2)
- if transposed:
- self.weight = Parameter(torch.empty(
- (in_channels, out_channels // groups, *kernel_size), **factory_kwargs))
- else:
- self.weight = Parameter(torch.empty(
- (out_channels, in_channels // groups, *kernel_size), **factory_kwargs))
- if bias:
- self.bias = Parameter(torch.empty(out_channels, **factory_kwargs))
- else:
- self.register_parameter('bias', None)
- self.reset_parameters()
- def reset_parameters(self) -> None:
- # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
- # uniform(-1/sqrt(k), 1/sqrt(k)), where k = weight.size(1) * prod(*kernel_size)
- # For more details see: https://github.com/pytorch/pytorch/issues/15314#issuecomment-477448573
- init.kaiming_uniform_(self.weight, a=math.sqrt(5))
- if self.bias is not None:
- fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
- if fan_in != 0:
- bound = 1 / math.sqrt(fan_in)
- init.uniform_(self.bias, -bound, bound)
- def extra_repr(self):
- s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
- ', stride={stride}')
- if self.padding != (0,) * len(self.padding):
- s += ', padding={padding}'
- if self.dilation != (1,) * len(self.dilation):
- s += ', dilation={dilation}'
- if self.output_padding != (0,) * len(self.output_padding):
- s += ', output_padding={output_padding}'
- if self.groups != 1:
- s += ', groups={groups}'
- if self.bias is None:
- s += ', bias=False'
- if self.padding_mode != 'zeros':
- s += ', padding_mode={padding_mode}'
- return s.format(**self.__dict__)
- def __setstate__(self, state):
- super().__setstate__(state)
- if not hasattr(self, 'padding_mode'):
- self.padding_mode = 'zeros'
- class Conv1d(_ConvNd):
- __doc__ = r"""Applies a 1D convolution over an input signal composed of several input
- planes.
- In the simplest case, the output value of the layer with input size
- :math:`(N, C_{\text{in}}, L)` and output :math:`(N, C_{\text{out}}, L_{\text{out}})` can be
- precisely described as:
- .. math::
- \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
- \sum_{k = 0}^{C_{in} - 1} \text{weight}(C_{\text{out}_j}, k)
- \star \text{input}(N_i, k)
- where :math:`\star` is the valid `cross-correlation`_ operator,
- :math:`N` is a batch size, :math:`C` denotes a number of channels,
- :math:`L` is a length of signal sequence.
- """ + r"""
- This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
- On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
- * :attr:`stride` controls the stride for the cross-correlation, a single
- number or a one-element tuple.
- * :attr:`padding` controls the amount of padding applied to the input. It
- can be either a string {{'valid', 'same'}} or a tuple of ints giving the
- amount of implicit padding applied on both sides.
- * :attr:`dilation` controls the spacing between the kernel points; also
- known as the à trous algorithm. It is harder to describe, but this `link`_
- has a nice visualization of what :attr:`dilation` does.
- {groups_note}
- Note:
- {depthwise_separable_note}
- Note:
- {cudnn_reproducibility_note}
- Note:
- ``padding='valid'`` is the same as no padding. ``padding='same'`` pads
- the input so the output has the shape as the input. However, this mode
- doesn't support any stride values other than 1.
- Note:
- This module supports complex data types i.e. ``complex32, complex64, complex128``.
- Args:
- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int, tuple or str, optional): Padding added to both sides of
- the input. Default: 0
- padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
- ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
- dilation (int or tuple, optional): Spacing between kernel
- elements. Default: 1
- groups (int, optional): Number of blocked connections from input
- channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the
- output. Default: ``True``
- """.format(**reproducibility_notes, **convolution_notes) + r"""
- Shape:
- - Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`
- - Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where
- .. math::
- L_{out} = \left\lfloor\frac{L_{in} + 2 \times \text{padding} - \text{dilation}
- \times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor
- Attributes:
- weight (Tensor): the learnable weights of the module of shape
- :math:`(\text{out\_channels},
- \frac{\text{in\_channels}}{\text{groups}}, \text{kernel\_size})`.
- The values of these weights are sampled from
- :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}`
- bias (Tensor): the learnable bias of the module of shape
- (out_channels). If :attr:`bias` is ``True``, then the values of these weights are
- sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}`
- Examples::
- >>> m = nn.Conv1d(16, 33, 3, stride=2)
- >>> input = torch.randn(20, 16, 50)
- >>> output = m(input)
- .. _cross-correlation:
- https://en.wikipedia.org/wiki/Cross-correlation
- .. _link:
- https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
- """
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: _size_1_t,
- stride: _size_1_t = 1,
- padding: Union[str, _size_1_t] = 0,
- dilation: _size_1_t = 1,
- groups: int = 1,
- bias: bool = True,
- padding_mode: str = 'zeros', # TODO: refine this type
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- # we create new variables below to make mypy happy since kernel_size has
- # type Union[int, Tuple[int]] and kernel_size_ has type Tuple[int]
- kernel_size_ = _single(kernel_size)
- stride_ = _single(stride)
- padding_ = padding if isinstance(padding, str) else _single(padding)
- dilation_ = _single(dilation)
- super().__init__(
- in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
- False, _single(0), groups, bias, padding_mode, **factory_kwargs)
- def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
- if self.padding_mode != 'zeros':
- return F.conv1d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
- weight, bias, self.stride,
- _single(0), self.dilation, self.groups)
- return F.conv1d(input, weight, bias, self.stride,
- self.padding, self.dilation, self.groups)
- def forward(self, input: Tensor) -> Tensor:
- return self._conv_forward(input, self.weight, self.bias)
- class Conv2d(_ConvNd):
- __doc__ = r"""Applies a 2D convolution over an input signal composed of several input
- planes.
- In the simplest case, the output value of the layer with input size
- :math:`(N, C_{\text{in}}, H, W)` and output :math:`(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})`
- can be precisely described as:
- .. math::
- \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
- \sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k)
- where :math:`\star` is the valid 2D `cross-correlation`_ operator,
- :math:`N` is a batch size, :math:`C` denotes a number of channels,
- :math:`H` is a height of input planes in pixels, and :math:`W` is
- width in pixels.
- """ + r"""
- This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
- On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
- * :attr:`stride` controls the stride for the cross-correlation, a single
- number or a tuple.
- * :attr:`padding` controls the amount of padding applied to the input. It
- can be either a string {{'valid', 'same'}} or an int / a tuple of ints giving the
- amount of implicit padding applied on both sides.
- * :attr:`dilation` controls the spacing between the kernel points; also
- known as the à trous algorithm. It is harder to describe, but this `link`_
- has a nice visualization of what :attr:`dilation` does.
- {groups_note}
- The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
- - a single ``int`` -- in which case the same value is used for the height and width dimension
- - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
- and the second `int` for the width dimension
- Note:
- {depthwise_separable_note}
- Note:
- {cudnn_reproducibility_note}
- Note:
- ``padding='valid'`` is the same as no padding. ``padding='same'`` pads
- the input so the output has the shape as the input. However, this mode
- doesn't support any stride values other than 1.
- Note:
- This module supports complex data types i.e. ``complex32, complex64, complex128``.
- Args:
- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int, tuple or str, optional): Padding added to all four sides of
- the input. Default: 0
- padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
- ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- groups (int, optional): Number of blocked connections from input
- channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the
- output. Default: ``True``
- """.format(**reproducibility_notes, **convolution_notes) + r"""
- Shape:
- - Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`
- - Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where
- .. math::
- H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] - \text{dilation}[0]
- \times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
- .. math::
- W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{dilation}[1]
- \times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
- Attributes:
- weight (Tensor): the learnable weights of the module of shape
- :math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},`
- :math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`.
- The values of these weights are sampled from
- :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
- bias (Tensor): the learnable bias of the module of shape
- (out_channels). If :attr:`bias` is ``True``,
- then the values of these weights are
- sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
- Examples:
- >>> # With square kernels and equal stride
- >>> m = nn.Conv2d(16, 33, 3, stride=2)
- >>> # non-square kernels and unequal stride and with padding
- >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
- >>> # non-square kernels and unequal stride and with padding and dilation
- >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
- >>> input = torch.randn(20, 16, 50, 100)
- >>> output = m(input)
- .. _cross-correlation:
- https://en.wikipedia.org/wiki/Cross-correlation
- .. _link:
- https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
- """
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: _size_2_t,
- stride: _size_2_t = 1,
- padding: Union[str, _size_2_t] = 0,
- dilation: _size_2_t = 1,
- groups: int = 1,
- bias: bool = True,
- padding_mode: str = 'zeros', # TODO: refine this type
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- kernel_size_ = _pair(kernel_size)
- stride_ = _pair(stride)
- padding_ = padding if isinstance(padding, str) else _pair(padding)
- dilation_ = _pair(dilation)
- super().__init__(
- in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
- False, _pair(0), groups, bias, padding_mode, **factory_kwargs)
- def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
- if self.padding_mode != 'zeros':
- return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
- weight, bias, self.stride,
- _pair(0), self.dilation, self.groups)
- return F.conv2d(input, weight, bias, self.stride,
- self.padding, self.dilation, self.groups)
- def forward(self, input: Tensor) -> Tensor:
- return self._conv_forward(input, self.weight, self.bias)
- class Conv3d(_ConvNd):
- __doc__ = r"""Applies a 3D convolution over an input signal composed of several input
- planes.
- In the simplest case, the output value of the layer with input size :math:`(N, C_{in}, D, H, W)`
- and output :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` can be precisely described as:
- .. math::
- out(N_i, C_{out_j}) = bias(C_{out_j}) +
- \sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star input(N_i, k)
- where :math:`\star` is the valid 3D `cross-correlation`_ operator
- """ + r"""
- This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
- On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
- * :attr:`stride` controls the stride for the cross-correlation.
- * :attr:`padding` controls the amount of padding applied to the input. It
- can be either a string {{'valid', 'same'}} or a tuple of ints giving the
- amount of implicit padding applied on both sides.
- * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
- It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
- {groups_note}
- The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
- - a single ``int`` -- in which case the same value is used for the depth, height and width dimension
- - a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
- the second `int` for the height dimension and the third `int` for the width dimension
- Note:
- {depthwise_separable_note}
- Note:
- {cudnn_reproducibility_note}
- Note:
- ``padding='valid'`` is the same as no padding. ``padding='same'`` pads
- the input so the output has the shape as the input. However, this mode
- doesn't support any stride values other than 1.
- Note:
- This module supports complex data types i.e. ``complex32, complex64, complex128``.
- Args:
- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int, tuple or str, optional): Padding added to all six sides of
- the input. Default: 0
- padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
- """.format(**reproducibility_notes, **convolution_notes) + r"""
- Shape:
- - Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`
- - Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or :math:`(C_{out}, D_{out}, H_{out}, W_{out})`,
- where
- .. math::
- D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0]
- \times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
- .. math::
- H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1]
- \times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
- .. math::
- W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2]
- \times (\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor
- Attributes:
- weight (Tensor): the learnable weights of the module of shape
- :math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},`
- :math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`.
- The values of these weights are sampled from
- :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
- bias (Tensor): the learnable bias of the module of shape (out_channels). If :attr:`bias` is ``True``,
- then the values of these weights are
- sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
- Examples::
- >>> # With square kernels and equal stride
- >>> m = nn.Conv3d(16, 33, 3, stride=2)
- >>> # non-square kernels and unequal stride and with padding
- >>> m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0))
- >>> input = torch.randn(20, 16, 10, 50, 100)
- >>> output = m(input)
- .. _cross-correlation:
- https://en.wikipedia.org/wiki/Cross-correlation
- .. _link:
- https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
- """
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: _size_3_t,
- stride: _size_3_t = 1,
- padding: Union[str, _size_3_t] = 0,
- dilation: _size_3_t = 1,
- groups: int = 1,
- bias: bool = True,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- kernel_size_ = _triple(kernel_size)
- stride_ = _triple(stride)
- padding_ = padding if isinstance(padding, str) else _triple(padding)
- dilation_ = _triple(dilation)
- super().__init__(
- in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
- False, _triple(0), groups, bias, padding_mode, **factory_kwargs)
- def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
- if self.padding_mode != "zeros":
- return F.conv3d(
- F.pad(
- input, self._reversed_padding_repeated_twice, mode=self.padding_mode
- ),
- weight,
- bias,
- self.stride,
- _triple(0),
- self.dilation,
- self.groups,
- )
- return F.conv3d(
- input, weight, bias, self.stride, self.padding, self.dilation, self.groups
- )
- def forward(self, input: Tensor) -> Tensor:
- return self._conv_forward(input, self.weight, self.bias)
- class _ConvTransposeNd(_ConvNd):
- def __init__(self, in_channels, out_channels, kernel_size, stride,
- padding, dilation, transposed, output_padding,
- groups, bias, padding_mode, device=None, dtype=None) -> None:
- if padding_mode != 'zeros':
- raise ValueError('Only "zeros" padding mode is supported for {}'.format(self.__class__.__name__))
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__(
- in_channels, out_channels, kernel_size, stride,
- padding, dilation, transposed, output_padding,
- groups, bias, padding_mode, **factory_kwargs)
- # dilation being an optional parameter is for backwards
- # compatibility
- def _output_padding(self, input: Tensor, output_size: Optional[List[int]],
- stride: List[int], padding: List[int], kernel_size: List[int],
- num_spatial_dims: int, dilation: Optional[List[int]] = None) -> List[int]:
- if output_size is None:
- ret = _single(self.output_padding) # converting to list if was not already
- else:
- has_batch_dim = input.dim() == num_spatial_dims + 2
- num_non_spatial_dims = 2 if has_batch_dim else 1
- if len(output_size) == num_non_spatial_dims + num_spatial_dims:
- output_size = output_size[num_non_spatial_dims:]
- if len(output_size) != num_spatial_dims:
- raise ValueError(
- "ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})"
- .format(num_spatial_dims, input.dim(), num_spatial_dims,
- num_non_spatial_dims + num_spatial_dims, len(output_size)))
- min_sizes = torch.jit.annotate(List[int], [])
- max_sizes = torch.jit.annotate(List[int], [])
- for d in range(num_spatial_dims):
- dim_size = ((input.size(d + num_non_spatial_dims) - 1) * stride[d] -
- 2 * padding[d] +
- (dilation[d] if dilation is not None else 1) * (kernel_size[d] - 1) + 1)
- min_sizes.append(dim_size)
- max_sizes.append(min_sizes[d] + stride[d] - 1)
- for i in range(len(output_size)):
- size = output_size[i]
- min_size = min_sizes[i]
- max_size = max_sizes[i]
- if size < min_size or size > max_size:
- raise ValueError((
- "requested an output size of {}, but valid sizes range "
- "from {} to {} (for an input of {})").format(
- output_size, min_sizes, max_sizes, input.size()[2:]))
- res = torch.jit.annotate(List[int], [])
- for d in range(num_spatial_dims):
- res.append(output_size[d] - min_sizes[d])
- ret = res
- return ret
- class ConvTranspose1d(_ConvTransposeNd):
- __doc__ = r"""Applies a 1D transposed convolution operator over an input image
- composed of several input planes.
- This module can be seen as the gradient of Conv1d with respect to its input.
- It is also known as a fractionally-strided convolution or
- a deconvolution (although it is not an actual deconvolution operation as it does
- not compute a true inverse of convolution). For more information, see the visualizations
- `here`_ and the `Deconvolutional Networks`_ paper.
- This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
- On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
- * :attr:`stride` controls the stride for the cross-correlation.
- * :attr:`padding` controls the amount of implicit zero padding on both
- sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
- below for details.
- * :attr:`output_padding` controls the additional size added to one side
- of the output shape. See note below for details.
- * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
- It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
- {groups_note}
- Note:
- The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
- amount of zero padding to both sizes of the input. This is set so that
- when a :class:`~torch.nn.Conv1d` and a :class:`~torch.nn.ConvTranspose1d`
- are initialized with same parameters, they are inverses of each other in
- regard to the input and output shapes. However, when ``stride > 1``,
- :class:`~torch.nn.Conv1d` maps multiple input shapes to the same output
- shape. :attr:`output_padding` is provided to resolve this ambiguity by
- effectively increasing the calculated output shape on one side. Note
- that :attr:`output_padding` is only used to find output shape, but does
- not actually add zero-padding to output.
- Note:
- In some circumstances when using the CUDA backend with CuDNN, this operator
- may select a nondeterministic algorithm to increase performance. If this is
- undesirable, you can try to make the operation deterministic (potentially at
- a performance cost) by setting ``torch.backends.cudnn.deterministic =
- True``.
- Please see the notes on :doc:`/notes/randomness` for background.
- Args:
- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
- will be added to both sides of the input. Default: 0
- output_padding (int or tuple, optional): Additional size added to one side
- of the output shape. Default: 0
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- """.format(**reproducibility_notes, **convolution_notes) + r"""
- Shape:
- - Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`
- - Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where
- .. math::
- L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation}
- \times (\text{kernel\_size} - 1) + \text{output\_padding} + 1
- Attributes:
- weight (Tensor): the learnable weights of the module of shape
- :math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
- :math:`\text{kernel\_size})`.
- The values of these weights are sampled from
- :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}`
- bias (Tensor): the learnable bias of the module of shape (out_channels).
- If :attr:`bias` is ``True``, then the values of these weights are
- sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}`
- .. _`here`:
- https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
- .. _`Deconvolutional Networks`:
- https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
- """
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: _size_1_t,
- stride: _size_1_t = 1,
- padding: _size_1_t = 0,
- output_padding: _size_1_t = 0,
- groups: int = 1,
- bias: bool = True,
- dilation: _size_1_t = 1,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- kernel_size = _single(kernel_size)
- stride = _single(stride)
- padding = _single(padding)
- dilation = _single(dilation)
- output_padding = _single(output_padding)
- super().__init__(
- in_channels, out_channels, kernel_size, stride, padding, dilation,
- True, output_padding, groups, bias, padding_mode, **factory_kwargs)
- def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
- if self.padding_mode != 'zeros':
- raise ValueError('Only `zeros` padding mode is supported for ConvTranspose1d')
- assert isinstance(self.padding, tuple)
- # One cannot replace List by Tuple or Sequence in "_output_padding" because
- # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
- num_spatial_dims = 1
- output_padding = self._output_padding(
- input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
- num_spatial_dims, self.dilation) # type: ignore[arg-type]
- return F.conv_transpose1d(
- input, self.weight, self.bias, self.stride, self.padding,
- output_padding, self.groups, self.dilation)
- class ConvTranspose2d(_ConvTransposeNd):
- __doc__ = r"""Applies a 2D transposed convolution operator over an input image
- composed of several input planes.
- This module can be seen as the gradient of Conv2d with respect to its input.
- It is also known as a fractionally-strided convolution or
- a deconvolution (although it is not an actual deconvolution operation as it does
- not compute a true inverse of convolution). For more information, see the visualizations
- `here`_ and the `Deconvolutional Networks`_ paper.
- This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
- On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
- * :attr:`stride` controls the stride for the cross-correlation.
- * :attr:`padding` controls the amount of implicit zero padding on both
- sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
- below for details.
- * :attr:`output_padding` controls the additional size added to one side
- of the output shape. See note below for details.
- * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
- It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
- {groups_note}
- The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`
- can either be:
- - a single ``int`` -- in which case the same value is used for the height and width dimensions
- - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
- and the second `int` for the width dimension
- Note:
- The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
- amount of zero padding to both sizes of the input. This is set so that
- when a :class:`~torch.nn.Conv2d` and a :class:`~torch.nn.ConvTranspose2d`
- are initialized with same parameters, they are inverses of each other in
- regard to the input and output shapes. However, when ``stride > 1``,
- :class:`~torch.nn.Conv2d` maps multiple input shapes to the same output
- shape. :attr:`output_padding` is provided to resolve this ambiguity by
- effectively increasing the calculated output shape on one side. Note
- that :attr:`output_padding` is only used to find output shape, but does
- not actually add zero-padding to output.
- Note:
- {cudnn_reproducibility_note}
- Args:
- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
- will be added to both sides of each dimension in the input. Default: 0
- output_padding (int or tuple, optional): Additional size added to one side
- of each dimension in the output shape. Default: 0
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- """.format(**reproducibility_notes, **convolution_notes) + r"""
- Shape:
- - Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`
- - Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where
- .. math::
- H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]
- \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1
- .. math::
- W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]
- \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1
- Attributes:
- weight (Tensor): the learnable weights of the module of shape
- :math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
- :math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`.
- The values of these weights are sampled from
- :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
- bias (Tensor): the learnable bias of the module of shape (out_channels)
- If :attr:`bias` is ``True``, then the values of these weights are
- sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
- Examples::
- >>> # With square kernels and equal stride
- >>> m = nn.ConvTranspose2d(16, 33, 3, stride=2)
- >>> # non-square kernels and unequal stride and with padding
- >>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
- >>> input = torch.randn(20, 16, 50, 100)
- >>> output = m(input)
- >>> # exact output size can be also specified as an argument
- >>> input = torch.randn(1, 16, 12, 12)
- >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)
- >>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
- >>> h = downsample(input)
- >>> h.size()
- torch.Size([1, 16, 6, 6])
- >>> output = upsample(h, output_size=input.size())
- >>> output.size()
- torch.Size([1, 16, 12, 12])
- .. _`here`:
- https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
- .. _`Deconvolutional Networks`:
- https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
- """
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: _size_2_t,
- stride: _size_2_t = 1,
- padding: _size_2_t = 0,
- output_padding: _size_2_t = 0,
- groups: int = 1,
- bias: bool = True,
- dilation: _size_2_t = 1,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- kernel_size = _pair(kernel_size)
- stride = _pair(stride)
- padding = _pair(padding)
- dilation = _pair(dilation)
- output_padding = _pair(output_padding)
- super().__init__(
- in_channels, out_channels, kernel_size, stride, padding, dilation,
- True, output_padding, groups, bias, padding_mode, **factory_kwargs)
- def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
- if self.padding_mode != 'zeros':
- raise ValueError('Only `zeros` padding mode is supported for ConvTranspose2d')
- assert isinstance(self.padding, tuple)
- # One cannot replace List by Tuple or Sequence in "_output_padding" because
- # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
- num_spatial_dims = 2
- output_padding = self._output_padding(
- input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
- num_spatial_dims, self.dilation) # type: ignore[arg-type]
- return F.conv_transpose2d(
- input, self.weight, self.bias, self.stride, self.padding,
- output_padding, self.groups, self.dilation)
- class ConvTranspose3d(_ConvTransposeNd):
- __doc__ = r"""Applies a 3D transposed convolution operator over an input image composed of several input
- planes.
- The transposed convolution operator multiplies each input value element-wise by a learnable kernel,
- and sums over the outputs from all input feature planes.
- This module can be seen as the gradient of Conv3d with respect to its input.
- It is also known as a fractionally-strided convolution or
- a deconvolution (although it is not an actual deconvolution operation as it does
- not compute a true inverse of convolution). For more information, see the visualizations
- `here`_ and the `Deconvolutional Networks`_ paper.
- This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
- On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
- * :attr:`stride` controls the stride for the cross-correlation.
- * :attr:`padding` controls the amount of implicit zero padding on both
- sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
- below for details.
- * :attr:`output_padding` controls the additional size added to one side
- of the output shape. See note below for details.
- * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
- It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
- {groups_note}
- The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`
- can either be:
- - a single ``int`` -- in which case the same value is used for the depth, height and width dimensions
- - a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
- the second `int` for the height dimension and the third `int` for the width dimension
- Note:
- The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
- amount of zero padding to both sizes of the input. This is set so that
- when a :class:`~torch.nn.Conv3d` and a :class:`~torch.nn.ConvTranspose3d`
- are initialized with same parameters, they are inverses of each other in
- regard to the input and output shapes. However, when ``stride > 1``,
- :class:`~torch.nn.Conv3d` maps multiple input shapes to the same output
- shape. :attr:`output_padding` is provided to resolve this ambiguity by
- effectively increasing the calculated output shape on one side. Note
- that :attr:`output_padding` is only used to find output shape, but does
- not actually add zero-padding to output.
- Note:
- {cudnn_reproducibility_note}
- Args:
- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
- will be added to both sides of each dimension in the input. Default: 0
- output_padding (int or tuple, optional): Additional size added to one side
- of each dimension in the output shape. Default: 0
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- """.format(**reproducibility_notes, **convolution_notes) + r"""
- Shape:
- - Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`
- - Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or
- :math:`(C_{out}, D_{out}, H_{out}, W_{out})`, where
- .. math::
- D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]
- \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1
- .. math::
- H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]
- \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1
- .. math::
- W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{dilation}[2]
- \times (\text{kernel\_size}[2] - 1) + \text{output\_padding}[2] + 1
- Attributes:
- weight (Tensor): the learnable weights of the module of shape
- :math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
- :math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`.
- The values of these weights are sampled from
- :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
- bias (Tensor): the learnable bias of the module of shape (out_channels)
- If :attr:`bias` is ``True``, then the values of these weights are
- sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
- :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
- Examples::
- >>> # With square kernels and equal stride
- >>> m = nn.ConvTranspose3d(16, 33, 3, stride=2)
- >>> # non-square kernels and unequal stride and with padding
- >>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2))
- >>> input = torch.randn(20, 16, 10, 50, 100)
- >>> output = m(input)
- .. _`here`:
- https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
- .. _`Deconvolutional Networks`:
- https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
- """
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- kernel_size: _size_3_t,
- stride: _size_3_t = 1,
- padding: _size_3_t = 0,
- output_padding: _size_3_t = 0,
- groups: int = 1,
- bias: bool = True,
- dilation: _size_3_t = 1,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- kernel_size = _triple(kernel_size)
- stride = _triple(stride)
- padding = _triple(padding)
- dilation = _triple(dilation)
- output_padding = _triple(output_padding)
- super().__init__(
- in_channels, out_channels, kernel_size, stride, padding, dilation,
- True, output_padding, groups, bias, padding_mode, **factory_kwargs)
- def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
- if self.padding_mode != 'zeros':
- raise ValueError('Only `zeros` padding mode is supported for ConvTranspose3d')
- assert isinstance(self.padding, tuple)
- # One cannot replace List by Tuple or Sequence in "_output_padding" because
- # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
- num_spatial_dims = 3
- output_padding = self._output_padding(
- input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
- num_spatial_dims, self.dilation) # type: ignore[arg-type]
- return F.conv_transpose3d(
- input, self.weight, self.bias, self.stride, self.padding,
- output_padding, self.groups, self.dilation)
- # TODO: Deprecate and remove the following alias `_ConvTransposeMixin`.
- #
- # `_ConvTransposeMixin` was a mixin that was removed. It is meant to be used
- # with `_ConvNd` to construct actual module classes that implements conv
- # transpose ops:
- #
- # class MyConvTranspose(_ConvNd, _ConvTransposeMixin):
- # ...
- #
- # In PyTorch, it has been replaced by `_ConvTransposeNd`, which is a proper
- # subclass of `_ConvNd`. However, some user code in the wild still (incorrectly)
- # use the internal class `_ConvTransposeMixin`. Hence, we provide this alias
- # for BC, because it is cheap and easy for us to do so, even though that
- # `_ConvTransposeNd` is really not a mixin anymore (but multiple inheritance as
- # above would still work).
- class _ConvTransposeMixin(_ConvTransposeNd):
- def __init__(self, *args, **kwargs):
- warnings.warn(
- "_ConvTransposeMixin is a deprecated internal class. "
- "Please consider using public APIs.")
- super().__init__(*args, **kwargs)
- # TODO: Conv2dLocal
- # TODO: Conv2dMap
- # TODO: ConvTranspose2dMap
- class _LazyConvXdMixin(LazyModuleMixin):
- groups: int
- transposed: bool
- in_channels: int
- out_channels: int
- kernel_size: Tuple[int, ...]
- weight: UninitializedParameter
- bias: UninitializedParameter
- def reset_parameters(self) -> None:
- # has_uninitialized_params is defined in parent class and it is using a protocol on self
- if not self.has_uninitialized_params() and self.in_channels != 0: # type: ignore[misc]
- # "type:ignore[..]" is required because mypy thinks that "reset_parameters" is undefined
- # in super class. Turns out that it is defined in _ConvND which is inherited by any class
- # that also inherits _LazyConvXdMixin
- super().reset_parameters() # type: ignore[misc]
- # Signature of "initialize_parameters" is incompatible with the definition in supertype LazyModuleMixin
- def initialize_parameters(self, input) -> None: # type: ignore[override]
- # defined by parent class but using a protocol
- if self.has_uninitialized_params(): # type: ignore[misc]
- self.in_channels = self._get_in_channels(input)
- if self.in_channels % self.groups != 0:
- raise ValueError('in_channels must be divisible by groups')
- assert isinstance(self.weight, UninitializedParameter)
- if self.transposed:
- self.weight.materialize((
- self.in_channels, self.out_channels // self.groups, *self.kernel_size))
- else:
- self.weight.materialize((
- self.out_channels, self.in_channels // self.groups, *self.kernel_size))
- if self.bias is not None:
- assert isinstance(self.bias, UninitializedParameter)
- self.bias.materialize((self.out_channels,))
- self.reset_parameters()
- # Function to extract in_channels from first input.
- def _get_in_channels(self, input: Tensor) -> int:
- num_spatial_dims = self._get_num_spatial_dims()
- num_dims_no_batch = num_spatial_dims + 1 # +1 for channels dim
- num_dims_batch = num_dims_no_batch + 1
- if input.dim() not in (num_dims_no_batch, num_dims_batch):
- raise RuntimeError("Expected {}D (unbatched) or {}D (batched) input to {}, but "
- "got input of size: {}".format(num_dims_no_batch, num_dims_batch,
- self.__class__.__name__, input.shape))
- return input.shape[1] if input.dim() == num_dims_batch else input.shape[0]
- # Function to return the number of spatial dims expected for inputs to the module.
- # This is expected to be implemented by subclasses.
- def _get_num_spatial_dims(self) -> int:
- raise NotImplementedError()
- # LazyConv1d defines weight as a Tensor but derived class defines it as UnitializeParameter
- class LazyConv1d(_LazyConvXdMixin, Conv1d): # type: ignore[misc]
- r"""A :class:`torch.nn.Conv1d` module with lazy initialization of
- the ``in_channels`` argument of the :class:`Conv1d` that is inferred from
- the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight` and `bias`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): Zero-padding added to both sides of
- the input. Default: 0
- padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
- ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
- dilation (int or tuple, optional): Spacing between kernel
- elements. Default: 1
- groups (int, optional): Number of blocked connections from input
- channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the
- output. Default: ``True``
- .. seealso:: :class:`torch.nn.Conv1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
- """
- # super class define this variable as None. "type: ignore[..] is required
- # since we are redefining the variable.
- cls_to_become = Conv1d # type: ignore[assignment]
- def __init__(
- self,
- out_channels: int,
- kernel_size: _size_1_t,
- stride: _size_1_t = 1,
- padding: _size_1_t = 0,
- dilation: _size_1_t = 1,
- groups: int = 1,
- bias: bool = True,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__(
- 0,
- 0,
- kernel_size,
- stride,
- padding,
- dilation,
- groups,
- # bias is hardcoded to False to avoid creating tensor
- # that will soon be overwritten.
- False,
- padding_mode,
- **factory_kwargs
- )
- self.weight = UninitializedParameter(**factory_kwargs)
- self.out_channels = out_channels
- if bias:
- self.bias = UninitializedParameter(**factory_kwargs)
- def _get_num_spatial_dims(self) -> int:
- return 1
- # LazyConv2d defines weight as a Tensor but derived class defines it as UnitializeParameter
- class LazyConv2d(_LazyConvXdMixin, Conv2d): # type: ignore[misc]
- r"""A :class:`torch.nn.Conv2d` module with lazy initialization of
- the ``in_channels`` argument of the :class:`Conv2d` that is inferred from
- the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight` and `bias`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): Zero-padding added to both sides of
- the input. Default: 0
- padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
- ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
- dilation (int or tuple, optional): Spacing between kernel
- elements. Default: 1
- groups (int, optional): Number of blocked connections from input
- channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the
- output. Default: ``True``
- .. seealso:: :class:`torch.nn.Conv2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
- """
- # super class define this variable as None. "type: ignore[..] is required
- # since we are redefining the variable.
- cls_to_become = Conv2d # type: ignore[assignment]
- def __init__(
- self,
- out_channels: int,
- kernel_size: _size_2_t,
- stride: _size_2_t = 1,
- padding: _size_2_t = 0,
- dilation: _size_2_t = 1,
- groups: int = 1,
- bias: bool = True,
- padding_mode: str = 'zeros', # TODO: refine this type
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__(
- 0,
- 0,
- kernel_size,
- stride,
- padding,
- dilation,
- groups,
- # bias is hardcoded to False to avoid creating tensor
- # that will soon be overwritten.
- False,
- padding_mode,
- **factory_kwargs
- )
- self.weight = UninitializedParameter(**factory_kwargs)
- self.out_channels = out_channels
- if bias:
- self.bias = UninitializedParameter(**factory_kwargs)
- def _get_num_spatial_dims(self) -> int:
- return 2
- # LazyConv3d defines weight as a Tensor but derived class defines it as UnitializeParameter
- class LazyConv3d(_LazyConvXdMixin, Conv3d): # type: ignore[misc]
- r"""A :class:`torch.nn.Conv3d` module with lazy initialization of
- the ``in_channels`` argument of the :class:`Conv3d` that is inferred from
- the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight` and `bias`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): Zero-padding added to both sides of
- the input. Default: 0
- padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
- ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
- dilation (int or tuple, optional): Spacing between kernel
- elements. Default: 1
- groups (int, optional): Number of blocked connections from input
- channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the
- output. Default: ``True``
- .. seealso:: :class:`torch.nn.Conv3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
- """
- # super class define this variable as None. "type: ignore[..] is required
- # since we are redefining the variable.
- cls_to_become = Conv3d # type: ignore[assignment]
- def __init__(
- self,
- out_channels: int,
- kernel_size: _size_3_t,
- stride: _size_3_t = 1,
- padding: _size_3_t = 0,
- dilation: _size_3_t = 1,
- groups: int = 1,
- bias: bool = True,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__(
- 0,
- 0,
- kernel_size,
- stride,
- padding,
- dilation,
- groups,
- # bias is hardcoded to False to avoid creating tensor
- # that will soon be overwritten.
- False,
- padding_mode,
- **factory_kwargs
- )
- self.weight = UninitializedParameter(**factory_kwargs)
- self.out_channels = out_channels
- if bias:
- self.bias = UninitializedParameter(**factory_kwargs)
- def _get_num_spatial_dims(self) -> int:
- return 3
- # LazyConvTranspose1d defines weight as a Tensor but derived class defines it as UnitializeParameter
- class LazyConvTranspose1d(_LazyConvXdMixin, ConvTranspose1d): # type: ignore[misc]
- r"""A :class:`torch.nn.ConvTranspose1d` module with lazy initialization of
- the ``in_channels`` argument of the :class:`ConvTranspose1d` that is inferred from
- the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight` and `bias`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
- will be added to both sides of the input. Default: 0
- output_padding (int or tuple, optional): Additional size added to one side
- of the output shape. Default: 0
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- .. seealso:: :class:`torch.nn.ConvTranspose1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
- """
- # super class define this variable as None. "type: ignore[..] is required
- # since we are redefining the variable.
- cls_to_become = ConvTranspose1d # type: ignore[assignment]
- def __init__(
- self,
- out_channels: int,
- kernel_size: _size_1_t,
- stride: _size_1_t = 1,
- padding: _size_1_t = 0,
- output_padding: _size_1_t = 0,
- groups: int = 1,
- bias: bool = True,
- dilation: _size_1_t = 1,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__(
- 0,
- 0,
- kernel_size,
- stride,
- padding,
- output_padding,
- groups,
- # bias is hardcoded to False to avoid creating tensor
- # that will soon be overwritten.
- False,
- dilation,
- padding_mode,
- **factory_kwargs
- )
- self.weight = UninitializedParameter(**factory_kwargs)
- self.out_channels = out_channels
- if bias:
- self.bias = UninitializedParameter(**factory_kwargs)
- def _get_num_spatial_dims(self) -> int:
- return 1
- # LazyConvTranspose2d defines weight as a Tensor but derived class defines it as UnitializeParameter
- class LazyConvTranspose2d(_LazyConvXdMixin, ConvTranspose2d): # type: ignore[misc]
- r"""A :class:`torch.nn.ConvTranspose2d` module with lazy initialization of
- the ``in_channels`` argument of the :class:`ConvTranspose2d` that is inferred from
- the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight` and `bias`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
- will be added to both sides of each dimension in the input. Default: 0
- output_padding (int or tuple, optional): Additional size added to one side
- of each dimension in the output shape. Default: 0
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- .. seealso:: :class:`torch.nn.ConvTranspose2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
- """
- # super class define this variable as None. "type: ignore[..] is required
- # since we are redefining the variable.
- cls_to_become = ConvTranspose2d # type: ignore[assignment]
- def __init__(
- self,
- out_channels: int,
- kernel_size: _size_2_t,
- stride: _size_2_t = 1,
- padding: _size_2_t = 0,
- output_padding: _size_2_t = 0,
- groups: int = 1,
- bias: bool = True,
- dilation: int = 1,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__(
- 0,
- 0,
- kernel_size,
- stride,
- padding,
- output_padding,
- groups,
- # bias is hardcoded to False to avoid creating tensor
- # that will soon be overwritten.
- False,
- dilation,
- padding_mode,
- **factory_kwargs
- )
- self.weight = UninitializedParameter(**factory_kwargs)
- self.out_channels = out_channels
- if bias:
- self.bias = UninitializedParameter(**factory_kwargs)
- def _get_num_spatial_dims(self) -> int:
- return 2
- # LazyConvTranspose3d defines weight as a Tensor but derived class defines it as UnitializeParameter
- class LazyConvTranspose3d(_LazyConvXdMixin, ConvTranspose3d): # type: ignore[misc]
- r"""A :class:`torch.nn.ConvTranspose3d` module with lazy initialization of
- the ``in_channels`` argument of the :class:`ConvTranspose3d` that is inferred from
- the ``input.size(1)``.
- The attributes that will be lazily initialized are `weight` and `bias`.
- Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
- on lazy modules and their limitations.
- Args:
- out_channels (int): Number of channels produced by the convolution
- kernel_size (int or tuple): Size of the convolving kernel
- stride (int or tuple, optional): Stride of the convolution. Default: 1
- padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
- will be added to both sides of each dimension in the input. Default: 0
- output_padding (int or tuple, optional): Additional size added to one side
- of each dimension in the output shape. Default: 0
- groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
- dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
- .. seealso:: :class:`torch.nn.ConvTranspose3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
- """
- # super class define this variable as None. "type: ignore[..] is required
- # since we are redefining the variable.
- cls_to_become = ConvTranspose3d # type: ignore[assignment]
- def __init__(
- self,
- out_channels: int,
- kernel_size: _size_3_t,
- stride: _size_3_t = 1,
- padding: _size_3_t = 0,
- output_padding: _size_3_t = 0,
- groups: int = 1,
- bias: bool = True,
- dilation: _size_3_t = 1,
- padding_mode: str = 'zeros',
- device=None,
- dtype=None
- ) -> None:
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__(
- 0,
- 0,
- kernel_size,
- stride,
- padding,
- output_padding,
- groups,
- # bias is hardcoded to False to avoid creating tensor
- # that will soon be overwritten.
- False,
- dilation,
- padding_mode,
- **factory_kwargs
- )
- self.weight = UninitializedParameter(**factory_kwargs)
- self.out_channels = out_channels
- if bias:
- self.bias = UninitializedParameter(**factory_kwargs)
- def _get_num_spatial_dims(self) -> int:
- return 3
|