123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434 |
- from torch import Tensor
- from torch.types import _size, _dtype
- from typing import Any, Optional, Tuple, Dict, List, Callable, Sequence, Union
- from .common_types import _ratio_any_t, _size_any_t, _size_1_t, _size_2_t, _size_3_t, _size_2_opt_t, _size_3_opt_t
- # 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys.
- # It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature
- # is wide-spread.
- # from mypy_extensions import TypedDict
- # GRID_SAMPLE_INTERPOLATION_MODES = TypedDict('GRID_SAMPLE_INTERPOLATION_MODES', {'bilinear': int, 'nearest': int})
- # GRID_SAMPLE_PADDING_MODES = TypedDict('GRID_SAMPLE_PADDING_MODES', {'zeros': int, 'border': int, 'reflection': int})
- GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int]
- GRID_SAMPLE_PADDING_MODES = Dict[str, int]
- # These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning.
- #
- # The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate.
- # This was necessary since the JIT uses BroadcastingList* types but static checking with mypy etc requires a `Sequence`
- # type. There is no way to express the expected lengths of these lists in the current Python typing system.
- #
- # Functions created via `_add_docstr` in `functional.py` where merely typed as `Any` by `stubgen`, so those were
- # deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code
- # generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system
- # to encode the type semantics of `_add_docstr`, should that system ever become widespread.
- def fractional_max_pool2d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
- output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
- _random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...
- def fractional_max_pool3d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
- output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
- _random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...
- def max_pool1d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
- dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
- Tensor, Tensor]: ...
- def max_pool2d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
- dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
- Tensor, Tensor]: ...
- def max_pool3d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
- dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
- Tensor, Tensor]: ...
- def max_unpool1d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
- padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
- def max_unpool2d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
- padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
- def max_unpool3d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
- padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
- def lp_pool1d(input: Tensor, norm_type: float, kernel_size: _size_1_t, stride: Union[Optional[_size], Optional[int]] = ...,
- ceil_mode: bool = ...) -> Tensor: ...
- def lp_pool2d(input: Tensor, norm_type: float, kernel_size: _size_2_t, stride: Union[Optional[_size], Optional[int]] = ...,
- ceil_mode: bool = ...) -> Tensor: ...
- def adaptive_max_pool1d_with_indices(input: Tensor, output_size: _size, return_indices: bool = ...) -> Tuple[
- Tensor, Tensor]: ...
- def adaptive_max_pool2d_with_indices(input: Tensor, output_size: _size_2_opt_t, return_indices: bool = ...) -> Tuple[
- Tensor, Tensor]: ...
- def adaptive_max_pool3d_with_indices(input: Tensor, output_size: _size_3_opt_t, return_indices: bool = ...) -> Tuple[
- Tensor, Tensor]: ...
- def adaptive_avg_pool1d(input: Tensor, output_size: _size_1_t) -> Tensor: ...
- def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ...
- def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ...
- def dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
- def alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
- def dropout1d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
- def dropout2d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
- def dropout3d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
- def feature_alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
- def threshold(input: Tensor, threshold: float, value: float, inplace: bool = ...) -> Tensor: ...
- def relu(input: Tensor, inplace: bool = ...) -> Tensor: ...
- def glu(input: Tensor, dim: int = ...) -> Tensor: ...
- def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., inplace: bool = ...) -> Tensor: ...
- def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ...
- def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
- def selu(input: Tensor, inplace: bool = ...) -> Tensor: ...
- def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
- def leaky_relu(input: Tensor, negative_slope: float = ..., inplace: bool = ...) -> Tensor: ...
- def prelu(input: Tensor, weight: Tensor) -> Tensor: ...
- def rrelu(input: Tensor, lower: float = ..., upper: float = ..., training: bool = ...,
- inplace: bool = ...) -> Tensor: ...
- def gelu(input: Any, approximate: str = ...): ...
- def hardshrink(input: Tensor, lambd: float = ...) -> Tensor: ...
- def tanhshrink(input: Any): ...
- def softsign(input: Any): ...
- def softmin(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...
- def softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...
- def gumbel_softmax(logits: Tensor, tau: float = ..., hard: bool = ..., eps: float = ..., dim: int = ...) -> Tensor: ...
- def log_softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ...,
- dtype: Optional[_dtype] = ...) -> Tensor: ...
- def tanh(input: Any): ...
- def sigmoid(input: Any) -> Tensor: ...
- def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ...
- def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...
- def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...
- def silu(input: Tensor, inplace: bool = False) -> Tensor: ...
- def mish(input: Tensor, inplace: bool = False) -> Tensor: ...
- def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ...
- def embedding(input: Tensor, weight: Tensor, padding_idx: Optional[int] = ..., max_norm: Optional[float] = ...,
- norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ...) -> Tensor: ...
- def embedding_bag(input: Tensor, weight: Tensor, offsets: Optional[Tensor] = ..., max_norm: Optional[float] = ...,
- norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ...,
- sparse: bool = ..., per_sample_weights: Optional[Tensor] = ...,
- include_last_offset: bool = ..., padding_idx: Optional[int] = ...) -> Tensor: ...
- def batch_norm(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor],
- weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., training: bool = ...,
- momentum: float = ..., eps: float = ...) -> Tensor: ...
- def instance_norm(input: Tensor, running_mean: Optional[Tensor] = ..., running_var: Optional[Tensor] = ...,
- weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., use_input_stats: bool = ...,
- momentum: float = ..., eps: float = ...) -> Tensor: ...
- def layer_norm(input: Tensor, normalized_shape: Sequence[int], weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
- eps: float = ...) -> Tensor: ...
- def group_norm(input: Tensor, num_groups: int, weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
- eps: float = ...) -> Tensor: ...
- def local_response_norm(input: Tensor, size: int, alpha: float = ..., beta: float = ..., k: float = ...) -> Tensor: ...
- def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: int = ...,
- reduction: str = ..., zero_infinity: bool = ...) -> Tensor: ...
- def nll_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
- ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
- def poisson_nll_loss(input: Tensor, target: Tensor, log_input: bool = ..., full: bool = ...,
- size_average: Optional[bool] = ..., eps: float = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def gaussian_nll_loss(input: Tensor, target: Tensor, var: Tensor, full: Optional[bool] = ...,
- eps: Optional[float] = ..., reduction: Optional[str] = ...) -> Tensor: ...
- def kl_div(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ..., log_target: bool = ...) -> Tensor: ...
- def cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
- ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...,
- label_smoothing: float = ...) -> Tensor: ...
- def binary_cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
- size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
- size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ..., pos_weight: Optional[Tensor] = ...) -> Tensor: ...
- def smooth_l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ..., beta: float = ...) -> Tensor: ...
- def huber_loss(input: Tensor, target: Tensor, reduction: str = ..., delta: float = ...) -> Tensor: ...
- def l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def mse_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
- size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def hinge_embedding_loss(input: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ...,
- reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
- def multilabel_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ...,
- reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
- def soft_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def multilabel_soft_margin_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
- size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def cosine_embedding_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
- size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def multi_margin_loss(input: Tensor, target: Tensor, p: int = ..., margin: float = ..., weight: Optional[Tensor] = ...,
- size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
- reduction: str = ...) -> Tensor: ...
- def upsample(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
- align_corners: Optional[Any] = ...): ...
- def interpolate(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
- align_corners: Optional[Any] = ..., recompute_scale_factor: Optional[Any] = ...,
- antialias: bool = ...): ...
- def upsample_nearest(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...
- def upsample_bilinear(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...
- def grid_sample(input: Tensor, grid: Tensor, mode: str = ..., padding_mode: str = ...,
- align_corners: Optional[Any] = ...) -> Tensor: ...
- def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[Any] = ...) -> Tensor: ...
- def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: float = ...) -> Tensor: ...
- def pairwise_distance(x1: Tensor, x2: Tensor, p: float = ..., eps: float = ..., keepdim: bool = ...) -> Tensor: ...
- def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = ..., p: float = ...,
- eps: float = ..., swap: bool = ..., size_average: Optional[bool] = ...,
- reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
- def triplet_margin_with_distance_loss(anchor: Tensor, positive: Tensor, negative: Tensor, *,
- distance_function: Optional[Callable[[Tensor, Tensor], Tensor]]=...,
- margin: float=..., swap: bool=..., reduction: str=...) -> Tensor: ...
- def normalize(input: Tensor, p: float = ..., dim: int = ..., eps: float = ...,
- out: Optional[Tensor] = ...) -> Tensor: ...
- def assert_int_or_pair(arg: Any, arg_name: Any, message: Any) -> None: ...
- def unfold(input: Tensor, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ...,
- stride: _size_any_t = ...) -> Tensor: ...
- def fold(input: Tensor, output_size: _size_any_t, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ...,
- stride: _size_any_t = ...) -> Tensor: ...
- def _canonical_mask(
- mask: Optional[Tensor],
- mask_name: str,
- other_type: Optional[_dtype],
- other_name: str,
- target_type: _dtype,
- check_other: bool = True,
- ) -> Optional[Tensor]: ...
- def _none_or_dtype(input: Optional[Tensor]) -> Optional[_dtype]: ...
- def multi_head_attention_forward(query: Tensor,
- key: Tensor,
- value: Tensor,
- embed_dim_to_check: int,
- num_heads: int,
- in_proj_weight: Optional[Tensor],
- in_proj_bias: Optional[Tensor],
- bias_k: Optional[Tensor],
- bias_v: Optional[Tensor],
- add_zero_attn: bool,
- dropout_p: float,
- out_proj_weight: Tensor,
- out_proj_bias: Optional[Tensor],
- training: bool = True,
- key_padding_mask: Optional[Tensor] = None,
- need_weights: bool = True,
- attn_mask: Optional[Tensor] = None,
- use_separate_proj_weight: bool = False,
- q_proj_weight: Optional[Tensor] = None,
- k_proj_weight: Optional[Tensor] = None,
- v_proj_weight: Optional[Tensor] = None,
- static_k: Optional[Tensor] = None,
- static_v: Optional[Tensor] = None,
- average_attn_weights: bool = True,
- is_causal: bool = False
- ) -> Tuple[Tensor, Optional[Tensor]]: ...
- from .. import conv1d as conv1d
- from .. import conv2d as conv2d
- from .. import conv3d as conv3d
- from .. import conv_transpose1d as conv_transpose1d
- from .. import conv_transpose2d as conv_transpose2d
- from .. import conv_transpose3d as conv_transpose3d
- from .. import conv_tbc as conv_tbc
- from .. import avg_pool1d as avg_pool1d
- from .. import relu_ as relu_
- from .. import selu_ as selu_
- from .. import celu_ as celu_
- from .. import rrelu_ as rrelu_
- from .. import pixel_shuffle as pixel_shuffle
- from .. import pixel_unshuffle as pixel_unshuffle
- from .. import channel_shuffle as channel_shuffle
- from .. import native_channel_shuffle as native_channel_shuffle
- from .. import pdist as pdist
- from .. import cosine_similarity as cosine_similarity
- fractional_max_pool2d: Callable
- fractional_max_pool3d: Callable
- max_pool1d: Callable
- max_pool2d: Callable
- max_pool3d: Callable
- adaptive_max_pool1d: Callable
- adaptive_max_pool2d: Callable
- adaptive_max_pool3d: Callable
- avg_pool2d: Callable
- avg_pool3d: Callable
- hardtanh_: Callable
- elu_: Callable
- leaky_relu_: Callable
- logsigmoid: Callable
- softplus: Callable
- softshrink: Callable
- one_hot: Callable
- scaled_dot_product_attention: Callable
|