12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055 |
- import torch
- import sys
- import ast
- import dataclasses
- import inspect
- import string
- import re
- from collections import namedtuple
- from textwrap import dedent
- from typing import List, Tuple # noqa: F401
- from torch._C._jit_tree_views import (
- ClassDef, Ident, Stmt, Decl, Def, Var,
- EmptyTypeAnnotation, Param, ExprStmt, Assign,
- Delete, Return, Raise, Assert, AugAssign, While,
- For, If, Pass, Break, Continue, Apply, Dots, Select,
- TrueLiteral, FalseLiteral, NoneLiteral, Starred,
- ListLiteral, TupleLiteral, DictLiteral, Const,
- StringLiteral, ListComp, Attribute, BinOp, UnaryOp,
- SliceExpr, Subscript, TernaryIf, With, WithItem, Property,
- DictComp,
- )
- from torch._sources import get_source_lines_and_file, parse_def, make_source_context
- from torch._sources import ParsedDef as _ParsedDef
- from torch.jit._dataclass_impls import DATACLASS_MAGIC_METHODS
- from torch.jit._monkeytype_config import monkeytype_trace, get_qualified_name
- from torch._jit_internal import should_drop, _is_drop_fn, is_static_fn, FunctionModifiers # noqa: F401
- from torch import _jit_internal
- import torch.jit.annotations
- _IS_ASTUNPARSE_INSTALLED = False
- try:
- import astunparse # type: ignore[import]
- _IS_ASTUNPARSE_INSTALLED = True
- except ImportError:
- pass
- # Borrowed from cPython implementation
- # https://github.com/python/cpython/blob/561612d8456cfab5672c9b445521113b847bd6b3/Lib/textwrap.py#L411#
- _reserved_prefix = '__jit'
- _reserved_names = {'print'}
- _identifier_chars = set(string.ascii_lowercase + string.ascii_uppercase + string.digits)
- def is_reserved_name(name):
- return name.startswith(_reserved_prefix) or name in _reserved_names
- pretty_node_names = {
- ast.FunctionDef: "function definitions",
- ast.For: "for loops",
- ast.Delete: "del statements",
- ast.ClassDef: "class definitions",
- ast.With: "with statements",
- ast.Raise: "raise statements",
- ast.Assert: "assertions",
- ast.Import: "import statements",
- ast.ImportFrom: "import statements",
- ast.Global: "global variables",
- ast.Break: "break statements",
- ast.Continue: "continue statements",
- }
- node_start_tokens = {
- ast.FunctionDef: "def",
- ast.For: "for",
- ast.Delete: "del",
- ast.ClassDef: "class",
- ast.With: "with",
- ast.Raise: "raise",
- ast.Assert: "assert",
- ast.Import: "import",
- ast.ImportFrom: "from",
- ast.Global: "global",
- ast.Break: "break",
- ast.Continue: "continue",
- }
- pretty_node_names.update({
- ast.AsyncFunctionDef: "async function definitions",
- ast.AsyncFor: "async for loops",
- ast.AsyncWith: "async with statements",
- ast.Try: "try blocks",
- ast.Nonlocal: "nonlocal variables",
- })
- node_start_tokens.update({
- ast.AsyncFunctionDef: "async def",
- ast.AsyncFor: "async for",
- ast.AsyncWith: "async with",
- ast.Try: "try",
- ast.Nonlocal: "nonlocal",
- })
- pretty_node_names.update({
- ast.AnnAssign: "annotated assignments",
- })
- # NB: no specific token for AnnAssign
- class FrontendError(Exception):
- def __init__(self, source_range, msg):
- self.source_range = source_range
- self.msg = msg
- # This has to be instantiated here so the ErrorReport is accurate to the
- # call stack when the FrontendError was raised
- self.error_report = torch._C.ErrorReport(self.source_range)
- def __str__(self):
- return self.msg + self.error_report.what().lstrip()
- class NotSupportedError(FrontendError):
- pass
- class UnsupportedNodeError(NotSupportedError):
- def __init__(self, ctx, offending_node, reason=''):
- # If we don't have a specific token, we default to length of 1
- node_type = type(offending_node)
- range_len = len(node_start_tokens.get(node_type, ' '))
- source_range = ctx.make_range(offending_node.lineno,
- offending_node.col_offset,
- offending_node.col_offset + range_len)
- feature_name = pretty_node_names.get(node_type, node_type.__name__)
- msg = "{} {}aren't supported".format(feature_name, reason + ' ' if reason else '')
- super().__init__(source_range, msg)
- class FrontendTypeError(FrontendError):
- pass
- def build_withitems(ctx, items):
- items = [build_withitem(ctx, i) for i in items]
- return list(items)
- def build_stmts(ctx, stmts):
- stmts = [build_stmt(ctx, s) for s in stmts]
- return list(filter(None, stmts))
- def get_class_properties(cls, self_name):
- """
- Get a list of Property objects representing the properties of a class.
- Args:
- cls: The class to get properties of.
- self_name: The name of the class that the properties should belong to.
- Returns:
- A list of Property objects corresponding to the properties of cls. Property
- here refers to the subclass of TreeView.
- """
- props = inspect.getmembers(
- cls, predicate=lambda m: isinstance(m, property))
- # Any property that should not compiled must be in this list on the Module.
- unused_properties = getattr(cls, "__jit_unused_properties__", [])
- # Create Property TreeView objects from inspected property objects.
- properties = []
- for prop in props:
- if prop[0] not in unused_properties and not should_drop(prop[1].fget):
- getter = get_jit_def(prop[1].fget, f"__{prop[0]}_getter", self_name=self_name)
- setter = get_jit_def(prop[1].fset, f"__{prop[0]}_setter", self_name=self_name) if prop[1].fset else None
- properties.append(Property(getter.range(), Ident(getter.range(), prop[0]), getter, setter))
- return properties
- def get_class_assigns(ctx, cls_ast):
- assigns = []
- def maybe_build_assign(builder, entry):
- nonlocal assigns
- try:
- assigns.append(builder(ctx, entry))
- except NotSupportedError:
- pass
- for entry in cls_ast.body:
- if isinstance(entry, ast.Assign):
- maybe_build_assign(StmtBuilder.build_Assign, entry)
- elif isinstance(entry, ast.AnnAssign):
- maybe_build_assign(StmtBuilder.build_AnnAssign, entry)
- return assigns
- def get_jit_class_def(cls, self_name):
- # Get defs for each method within the current class independently
- # TODO: proper overriding analysis when implementing class inheritance
- methods = inspect.getmembers(
- cls,
- predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
- and not is_static_fn(cls, m.__name__)
- and m.__name__ in cls.__dict__
- and not _is_drop_fn(m)
- )
- def is_classmethod(fn):
- return inspect.ismethod(fn) and getattr(fn, "__self__", None) == cls
- # Get and parse the source code for this class
- sourcelines, file_lineno, filename = get_source_lines_and_file(cls, torch._C.ErrorReport.call_stack())
- source = ''.join(sourcelines)
- dedent_src = dedent(source)
- py_ast = ast.parse(dedent_src)
- class_ast = py_ast.body[0]
- assert isinstance(class_ast, ast.ClassDef)
- # Special case for dataclasses. In general we need access to the source code for
- # an object in order to JIT compile it. But the dataclasses module dynamically synthesizes
- # magic methods for classes, and we can't get the source code for these methods. As a
- # workaround, we synthesize TorchScript-friendly implementations ourselves.
- if dataclasses.is_dataclass(cls):
- # Detect whether the user manually implemented any of the magic methods. If they did,
- # we don't want to synthesize/override them.
- overrides = {
- method.name
- for method in class_ast.body
- if isinstance(method, ast.FunctionDef) and method.name in DATACLASS_MAGIC_METHODS
- }
- for i, (name, _) in enumerate(methods):
- # Is this a magic method we can synthesize?
- synthesizer_fn = DATACLASS_MAGIC_METHODS.get(name)
- if synthesizer_fn and name not in overrides:
- parsed_def = synthesizer_fn(cls)
- methods[i] = name, parsed_def
- func = getattr(cls, name)
- _jit_internal.loader.cache(func, parsed_def.source)
- method_defs = [
- get_jit_def(obj, name, self_name=self_name, is_classmethod=is_classmethod(obj))
- for (name, obj) in methods
- ]
- properties = get_class_properties(cls, self_name)
- leading_whitespace_len = len(source.split('\n', 1)[0]) - len(dedent_src.split('\n', 1)[0])
- ctx = make_source_context(source, filename, file_lineno, leading_whitespace_len, False)
- assigns = get_class_assigns(ctx, class_ast)
- return build_class_def(ctx, class_ast, method_defs, properties, self_name, assigns)
- def get_jit_def(fn, def_name, self_name=None, is_classmethod=False):
- """
- Build a JIT AST (TreeView) from the given function.
- Args:
- fn: A function object to compile or a pre-parsed ParsedDef object
- def_name: The name to give to the resulting AST object. This is not
- always the same as `fn.__name__`, for example:
- def _forward(self):
- ...
- forward = _forward
- In this case, the `__name__` attribute of the function object is "_forward",
- but we want the result AST to have the name "forward".
- self_name: If this function is a method, what the type name of `self` is.
- """
- parsed_def = parse_def(fn) if not isinstance(fn, _ParsedDef) else fn
- type_line = torch.jit.annotations.get_type_line(parsed_def.source)
- fn_def = parsed_def.ast.body[0]
- if is_classmethod:
- arg_name = fn_def.args.args[0].arg
- # Insert a statement that assigns the first argument to the class
- assign_stmt = ast.parse(f"{arg_name} = {self_name}").body[0]
- fn_def.body.insert(0, assign_stmt)
- # Swap out the function signature and body if it is unused
- if should_drop(fn):
- unused_fn_def = ast.parse("def unused_fn(self: Any):\n\traise RuntimeError(\"Cannot call @unused methods\")")
- if len(unused_fn_def.body) != 1 or not isinstance(unused_fn_def.body[0], ast.FunctionDef):
- raise RuntimeError(f"Expected a single top-level function: {parsed_def.filename}:{parsed_def.file_lineno}")
- unused_def = unused_fn_def.body[0]
- fn_def.body = unused_def.body
- # kwarg/vararg not supported by `build_def`
- fn_def.args.kwarg = fn_def.args.vararg = None
- for arg in fn_def.args.args + fn_def.args.kwonlyargs:
- # Replace potentially unsupported type annotations by "Any"
- arg.annotation = unused_def.args.args[0].annotation
- if _is_drop_fn(fn):
- # Dropping potentially unsupported return type annotation for jit._drop
- fn_def.returns = None
- fn_def.type_comment = None
- # If MonkeyType is installed, get all the consolidated type traces
- # for the arguments from type_trace_db
- type_trace_db = torch.jit._script._get_type_trace_db()
- pdt_arg_types = None
- if monkeytype_trace and not isinstance(fn, _ParsedDef):
- qualname = get_qualified_name(fn)
- pdt_arg_types = type_trace_db.get_args_types(qualname)
- return build_def(parsed_def.ctx, fn_def, type_line, def_name, self_name=self_name, pdt_arg_types=pdt_arg_types)
- # TODO: more robust handling of recognizing ignore context manager
- def is_torch_jit_ignore_context_manager(stmt):
- # checks if the statement is torch.jit.ignore context manager
- if isinstance(stmt.items[0].context_expr, ast.Call):
- # extract torch part
- function = stmt.items[0].context_expr.func
- if isinstance(function, ast.Attribute):
- attr_name = function.attr
- attr_value = function.value
- if attr_name == "_IgnoreContextManager" and isinstance(attr_value, ast.Attribute):
- # there should be at most two nested attributes (e.g torch.jit._IgnoreContextManager)
- if attr_value.attr == "jit" and isinstance(attr_value.value, ast.Name):
- if attr_value.value.id == "torch":
- return True
- return False
- class Builder:
- def __call__(self, ctx, node):
- method = getattr(self, 'build_' + node.__class__.__name__, None)
- if method is None:
- raise UnsupportedNodeError(ctx, node)
- return method(ctx, node)
- def build_class_def(ctx, py_def, methods, properties, self_name, assigns):
- r = ctx.make_range(py_def.lineno, py_def.col_offset,
- py_def.col_offset + len("class"))
- return ClassDef(Ident(r, self_name), [Stmt(method) for method in methods], properties, assigns)
- def build_def(ctx, py_def, type_line, def_name, self_name=None, pdt_arg_types=None):
- body = py_def.body
- r = ctx.make_range(py_def.lineno,
- py_def.col_offset,
- py_def.col_offset + len("def"))
- param_list = build_param_list(ctx, py_def.args, self_name, pdt_arg_types)
- return_type = None
- if getattr(py_def, 'returns', None) is not None:
- return_type = build_expr(ctx, py_def.returns)
- decl = Decl(r, param_list, return_type)
- is_method = self_name is not None
- if type_line is not None:
- type_comment_decl = torch._C.parse_type_comment(type_line)
- decl = torch._C.merge_type_from_type_comment(decl, type_comment_decl, is_method)
- return Def(Ident(r, def_name),
- decl,
- build_stmts(ctx, body))
- _vararg_kwarg_err = ("Compiled functions can't take variable number of arguments "
- "or use keyword-only arguments with defaults")
- def build_param_list(ctx, py_args, self_name, pdt_arg_types=None):
- if py_args.kwarg is not None:
- expr = py_args.kwarg
- ctx_range = ctx.make_range(expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg))
- raise NotSupportedError(ctx_range, _vararg_kwarg_err)
- if py_args.vararg is not None:
- expr = py_args.vararg
- ctx_range = ctx.make_range(expr.lineno, expr.col_offset - 1, expr.col_offset + len(expr.arg))
- raise NotSupportedError(ctx_range, _vararg_kwarg_err)
- if len(py_args.kw_defaults) > 0:
- # kw_defaults is a list of the values for the kwargs (which default to None),
- # so they don't actually have line numbers.
- for arg in py_args.kw_defaults:
- if arg is not None:
- ctx_range = build_expr(ctx, arg).range()
- raise NotSupportedError(ctx_range, _vararg_kwarg_err)
- # List of Tuple of args and type as inferred by profile directed typing
- arg_and_types = [(arg, pdt_arg_types[arg.arg] if pdt_arg_types and bool(pdt_arg_types[arg.arg]) else None)
- for arg in py_args.args]
- arg_and_types_kwonlyargs = [(arg, pdt_arg_types[arg.arg] if pdt_arg_types and bool(pdt_arg_types[arg.arg])
- else None) for arg in py_args.kwonlyargs]
- result = [build_param(ctx, arg, self_name, kwarg_only=False, pdt_arg_type=arg_type)
- for arg, arg_type in arg_and_types]
- result += [build_param(ctx, arg, self_name, kwarg_only=True, pdt_arg_type=arg_type)
- for arg, arg_type in arg_and_types_kwonlyargs]
- return result
- def build_param(ctx, py_arg, self_name, kwarg_only, pdt_arg_type=None):
- # NB: In Python3 py_arg is a pair of (str arg, expr? annotation)
- name = py_arg.arg
- r = ctx.make_range(py_arg.lineno, py_arg.col_offset, py_arg.col_offset + len(name))
- if getattr(py_arg, 'annotation', None) is not None:
- annotation_expr = build_expr(ctx, py_arg.annotation)
- elif pdt_arg_type:
- annotation_expr = Var(Ident(r, pdt_arg_type))
- elif self_name is not None and name == 'self':
- annotation_expr = Var(Ident(r, self_name))
- else:
- annotation_expr = EmptyTypeAnnotation(r)
- return Param(annotation_expr, Ident(r, name), kwarg_only)
- def build_ignore_context_manager(ctx, stmt):
- InputType = namedtuple('InputType', ['name', 'ann'])
- OutputType = namedtuple('OutputType', ['name', 'ann'])
- def process_ins_outs(args):
- # parse the context manager to figure out inputs and outputs
- # with their annotated types
- # TODO: add input, output validator
- inputs = []
- outputs = []
- for arg in args:
- var_name = arg.arg
- var_ann = arg.value.value
- var_decl_type, var_ann = var_ann.split(":")
- if var_decl_type == "inp":
- inputs.append(InputType(var_name, var_ann))
- if var_decl_type == "out":
- outputs.append(OutputType(var_name, var_ann))
- return inputs, outputs
- def create_unique_name_ext(ctx, stmt):
- # extension will be based on the full path filename plus
- # the line number of original context manager
- fn = re.sub(r'[^a-zA-Z0-9_]', '_', ctx.filename)
- return f"{fn}_{stmt.lineno}"
- def build_return_ann_stmt(outputs):
- return_type_ann = ""
- return_statement_str = "return "
- if len(outputs) == 0:
- return_type_ann += " -> None"
- if len(outputs) == 1:
- return_type_ann = " -> " + outputs[0].ann
- return_statement_str += outputs[0].name
- if len(outputs) > 1:
- return_type_ann = " -> Tuple"
- return_type_ann += "[" + ", ".join([var.ann for var in outputs]) + "]"
- return_statement_str += ", ".join([var.name for var in outputs])
- return return_type_ann, return_statement_str
- def build_args(args):
- return ", ".join([arg.name for arg in args])
- inputs, outputs = process_ins_outs(stmt.items[0].context_expr.keywords)
- # build the replacement function str with given inputs and outputs
- ignore_function_name = "func_ignore_" + create_unique_name_ext(ctx, stmt)
- ignore_function_str = "\ndef " + ignore_function_name
- ignore_function_str += "(" + ", ".join([var.name + " :" + var.ann for var in inputs]) + ")"
- return_ann, return_stmt = build_return_ann_stmt(outputs)
- ignore_function_str += return_ann + ": pass"
- # first create the functionDef object from just declaration
- ignore_function = ast.parse(ignore_function_str).body[0]
- # dump the body of context manager to dummy function
- ignore_function.body = stmt.body # type: ignore[attr-defined]
- # insert return statement to the function
- return_stmt = ast.parse(return_stmt).body[0]
- ignore_function.body.append(return_stmt) # type: ignore[attr-defined]
- # registers the custom function in the global context
- ignore_func_str = "@torch.jit.ignore\n" + astunparse.unparse(ignore_function)
- ignore_func_str += "\nglobals()[\"{}\"] = {}".format(ignore_function_name, ignore_function_name)
- exec(ignore_func_str) # noqa: P204
- # build the statements as:
- # <out_1>, <out_2>, ... = torch.jit.frontend.<func>(<in_1>, <in_2>)
- assign_str_lhs = build_args(outputs)
- # this function will be registered in torch.jit.frontend module by default
- assign_str_rhs = "torch.jit.frontend.{}(".format(ignore_function_name) + build_args(inputs) + ")"
- if len(outputs) > 0:
- assign_str = assign_str_lhs + " = " + assign_str_rhs
- else:
- assign_str = assign_str_rhs
- assign_ast = ast.parse(assign_str).body[0]
- return assign_ast
- def get_default_args(fn):
- if fn is None:
- return {}
- signature = inspect.signature(fn)
- return {
- k: v.default
- for k, v in signature.parameters.items()
- if v.default is not inspect.Parameter.empty
- }
- def get_default_args_for_class(cls):
- """
- Get default arguments for all methods in a class (except for static methods).
- Args:
- cls: type - The class type to inspect for default arguments.
- Returns:
- A Dict[str, Dict[str, Any]] which maps each method name to a Dict[str, Any]
- that maps each argument name to its default value.
- """
- # Get methods (except static methods because those are compiled separately as
- # if they were independent script functions).
- methods = inspect.getmembers(
- cls,
- predicate=lambda m: (inspect.ismethod(m) or inspect.isfunction(m))
- and not is_static_fn(cls, m.__name__)
- and m.__name__ in cls.__dict__
- )
- # Get method defaults. Property defaults do not need to be considered
- # because setters cannot be invoked without a value.
- defaults = {method_name: get_default_args(method_impl) for method_name, method_impl in methods}
- return defaults
- class WithItemBuilder(Builder):
- @staticmethod
- def build_withitem(ctx, item):
- lineno = item.context_expr.lineno
- start = item.context_expr.col_offset
- end = start + len(pretty_node_names[ast.With])
- op_vars = item.optional_vars
- r = ctx.make_range(lineno, start, end)
- return WithItem(r, build_expr(ctx, item.context_expr), build_expr(ctx, op_vars) if op_vars else None)
- class StmtBuilder(Builder):
- augassign_map = {
- ast.Add: '+',
- ast.Sub: '-',
- ast.Mult: '*',
- ast.Div: '/',
- ast.Mod: '%',
- ast.BitOr: '|',
- ast.BitAnd: '&',
- ast.BitXor: '^',
- ast.LShift: '<<',
- ast.RShift: '>>',
- ast.Pow: '**',
- }
- @staticmethod
- def build_Expr(ctx, stmt):
- value = stmt.value
- if value.__class__.__name__ == 'Str':
- # If a statement is a string literal expression,
- # then it is a docstring. Just ignore it.
- return None
- else:
- return ExprStmt(build_expr(ctx, value))
- @staticmethod
- def build_Assign(ctx, stmt):
- rhs = build_expr(ctx, stmt.value)
- lhs = [build_expr(ctx, x) for x in stmt.targets]
- return Assign(lhs, rhs)
- @staticmethod
- def build_AnnAssign(ctx, stmt):
- if stmt.value is None:
- raise UnsupportedNodeError(ctx, stmt, reason='without assigned value')
- # Disallow type annotations on instance attributes outside of __init__
- if type(stmt.target) == ast.Attribute and \
- stmt.target.value.id == "self" and ctx.funcname != "__init__": # type: ignore[attr-defined]
- start = stmt.col_offset
- end = start + len(f"self.{stmt.target.attr}")
- if hasattr(stmt.annotation, 'id'):
- end += len(f": {stmt.annotation.id}")
- sr = ctx.make_range(stmt.lineno, start, end)
- raise ValueError("Type annotations on instance attributes must be declared in "
- f"__init__, not '{ctx.funcname}': {sr}")
- rhs = build_expr(ctx, stmt.value)
- lhs = build_expr(ctx, stmt.target)
- the_type = build_expr(ctx, stmt.annotation)
- return Assign([lhs], rhs, the_type)
- @staticmethod
- def build_Delete(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("del"))
- return Delete(r, [build_expr(ctx, target) for target in stmt.targets])
- @staticmethod
- def build_Return(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("return"))
- return Return(r, None if stmt.value is None else build_expr(ctx, stmt.value))
- @staticmethod
- def build_Raise(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("raise"))
- expr = build_expr(ctx, stmt.exc)
- return Raise(r, expr)
- @staticmethod
- def build_Assert(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("assert"))
- test = build_expr(ctx, stmt.test)
- msg = build_expr(ctx, stmt.msg) if stmt.msg is not None else None
- return Assert(r, test, msg)
- @staticmethod
- def build_AugAssign(ctx, stmt):
- lhs = build_expr(ctx, stmt.target)
- rhs = build_expr(ctx, stmt.value)
- op = type(stmt.op)
- if op in StmtBuilder.augassign_map:
- op_token = StmtBuilder.augassign_map[op]
- else:
- raise NotSupportedError(
- find_before(ctx, rhs.range().start, '=', offsets=(-1, 0)),
- "unsupported kind of augmented assignment: " + op.__name__)
- return AugAssign(lhs, op_token, rhs)
- @staticmethod
- def build_While(ctx, stmt):
- if stmt.orelse:
- # TODO: try to recover the location of else:? Python doesn't give us useful
- # annotations in this case
- raise NotSupportedError(None, "else branches of while loops aren't supported")
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("while"))
- return While(r, build_expr(ctx, stmt.test),
- build_stmts(ctx, stmt.body))
- @staticmethod
- def build_For(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("for"))
- if stmt.orelse:
- raise NotSupportedError(r, "else branches of for loops aren't supported")
- return For(
- r, [build_expr(ctx, stmt.target)],
- [build_expr(ctx, stmt.iter)], build_stmts(ctx, stmt.body))
- @staticmethod
- def build_If(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("if"))
- return If(r, build_expr(ctx, stmt.test),
- build_stmts(ctx, stmt.body),
- build_stmts(ctx, stmt.orelse))
- @staticmethod
- def build_Print(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("print"))
- if stmt.dest:
- raise NotSupportedError(r, "print statements with non-default destinations aren't supported")
- args = [build_expr(ctx, val) for val in stmt.values]
- return ExprStmt(Apply(Var(Ident(r, "print")), args, []))
- @staticmethod
- def build_Pass(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("pass"))
- return Pass(r)
- @staticmethod
- def build_Break(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("break"))
- return Break(r)
- @staticmethod
- def build_Continue(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("continue"))
- return Continue(r)
- @staticmethod
- def build_With(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset + len("with"))
- # Handle ignore context manager
- if is_torch_jit_ignore_context_manager(stmt):
- if not _IS_ASTUNPARSE_INSTALLED:
- raise RuntimeError("torch.jit._IgnoreContextManager requires installing Python library `astunparse`,\
- please install it in your Python environment")
- assign_ast = build_ignore_context_manager(ctx, stmt)
- return build_stmt(ctx, assign_ast)
- return With(r, build_withitems(ctx, stmt.items), build_stmts(ctx, stmt.body))
- class ExprBuilder(Builder):
- binop_map = {
- ast.Add: '+',
- ast.Sub: '-',
- ast.Mult: '*',
- ast.Div: '/',
- ast.Pow: '**',
- ast.Mod: '%',
- ast.FloorDiv: '//',
- ast.BitAnd: '&',
- ast.BitXor: '^',
- ast.BitOr: '|',
- ast.LShift: '<<',
- ast.RShift: '>>',
- }
- binop_map[ast.MatMult] = '@'
- unop_map = {
- ast.Not: 'not',
- ast.USub: '-',
- ast.Invert: '~',
- }
- boolop_map = {
- ast.And: 'and',
- ast.Or: 'or',
- }
- cmpop_map = {
- ast.Eq: '==',
- ast.NotEq: '!=',
- ast.LtE: '<=',
- ast.Lt: '<',
- ast.GtE: '>=',
- ast.Gt: '>',
- ast.Is: 'is',
- ast.IsNot: 'is not',
- ast.In: 'in',
- ast.NotIn: 'not in',
- }
- @staticmethod
- def build_Attribute(ctx, expr):
- base = build_expr(ctx, expr.value)
- # expr.attr is just a string, so it's not annotated in any way, so we have
- # to build the range manually
- source = ctx.source.encode('utf-8')
- def get_char(index):
- return chr(source[index])
- start_pos = base.range().end + 1
- while get_char(start_pos) in string.whitespace: # Skip whitespace
- start_pos += 1
- end_pos = start_pos + len(expr.attr)
- name_range = ctx.make_raw_range(start_pos, end_pos)
- return Select(base, Ident(name_range, expr.attr))
- @staticmethod
- def build_Call(ctx, expr):
- func = build_expr(ctx, expr.func)
- args = [build_expr(ctx, py_arg) for py_arg in expr.args]
- if hasattr(expr, 'starargs') and expr.starargs:
- stararg_expr = build_expr(ctx, expr.starargs)
- args += [Starred(stararg_expr.range(), stararg_expr)]
- kwargs = []
- for kw in expr.keywords:
- kw_expr = build_expr(ctx, kw.value)
- # XXX: we could do a better job at figuring out the range for the name here
- if not kw.arg:
- raise NotSupportedError(kw_expr.range(), 'keyword-arg expansion is not supported')
- kwargs.append(Attribute(Ident(kw_expr.range(), kw.arg), kw_expr))
- return Apply(func, args, kwargs)
- @staticmethod
- def build_Ellipsis(ctx, expr):
- r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 3) # len("...") == 3
- return Dots(r)
- @staticmethod
- def build_Name(ctx, expr):
- r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(expr.id))
- if expr.id.startswith(_reserved_prefix):
- raise NotSupportedError(r, "names of variables used in JIT-ed functions "
- "can't start with " + _reserved_prefix)
- if expr.id == "True":
- return TrueLiteral(r)
- elif expr.id == "False":
- return FalseLiteral(r)
- elif expr.id == "None":
- return NoneLiteral(r)
- elif expr.id == "Ellipsis":
- return Dots(r)
- return Var(Ident(r, expr.id))
- @staticmethod
- def build_NameConstant(ctx, expr):
- r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(str(expr.value)))
- if expr.value is True:
- return TrueLiteral(r)
- elif expr.value is False:
- return FalseLiteral(r)
- elif expr.value is None:
- return NoneLiteral(r)
- elif expr.value == Ellipsis:
- return Dots(r)
- else:
- raise ValueError("Name constant value unsupported: " + str(expr.value))
- @staticmethod
- def build_BinOp(ctx, expr):
- lhs = build_expr(ctx, expr.left)
- rhs = build_expr(ctx, expr.right)
- op = type(expr.op)
- if op == ast.Div and not ctx.uses_true_division:
- err_range = ctx.make_raw_range(lhs.range().end, rhs.range().start)
- raise FrontendError(err_range, 'Division of ints in TorchScript uses Python 3 true '
- 'division semantics. Please put `from __future__ '
- 'import division` at the top of your file')
- op_token = ExprBuilder.binop_map.get(op)
- if op_token is None:
- err_range = ctx.make_raw_range(lhs.range().end, rhs.range().start)
- raise NotSupportedError(err_range, "unsupported binary operator: " + op.__name__)
- return BinOp(op_token, lhs, rhs)
- @staticmethod
- def build_UnaryOp(ctx, expr):
- sub_expr = build_expr(ctx, expr.operand)
- op = type(expr.op)
- op_token = ExprBuilder.unop_map.get(op)
- if op_token is None:
- raise NotSupportedError(expr.range(), "unsupported unary operator: " + op.__name__)
- r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(op_token))
- return UnaryOp(r, op_token, sub_expr)
- @staticmethod
- def build_BoolOp(ctx, expr):
- if len(expr.values) < 2:
- raise AssertionError("expected at least 2 values in BoolOp, but got " + str(len(expr.values)))
- sub_exprs = [build_expr(ctx, sub_expr) for sub_expr in expr.values]
- op = type(expr.op)
- op_token = ExprBuilder.boolop_map.get(op)
- if op_token is None:
- err_range = ctx.make_raw_range(sub_exprs[0].range().end, sub_exprs[1].range().start)
- raise NotSupportedError(err_range, "unsupported boolean operator: " + op.__name__)
- lhs = sub_exprs[0]
- for rhs in sub_exprs[1:]:
- lhs = BinOp(op_token, lhs, rhs)
- return lhs
- @staticmethod
- def build_IfExp(ctx, expr):
- return TernaryIf(build_expr(ctx, expr.test),
- build_expr(ctx, expr.body),
- build_expr(ctx, expr.orelse))
- @staticmethod
- def build_Compare(ctx, expr):
- operands = [build_expr(ctx, e) for e in [expr.left] + list(expr.comparators)]
- result = None
- for lhs, op_, rhs in zip(operands, expr.ops, operands[1:]):
- op = type(op_)
- op_token = ExprBuilder.cmpop_map.get(op)
- r = ctx.make_raw_range(lhs.range().end, rhs.range().start)
- if op_token is None:
- raise NotSupportedError(r, "unsupported comparison operator: " + op.__name__)
- if op == ast.NotIn:
- # NB: `not in` is just `not( in )`, so we don't introduce new tree view
- # but just make it a nested call in our tree view structure
- in_expr = BinOp('in', lhs, rhs)
- cmp_expr = UnaryOp(r, 'not', in_expr)
- else:
- cmp_expr = BinOp(op_token, lhs, rhs)
- if result is None:
- result = cmp_expr
- else:
- result = BinOp('and', result, cmp_expr)
- return result
- @staticmethod
- def build_Subscript(ctx, expr):
- def build_SliceExpr(ctx, base, slice_expr):
- lower = build_expr(ctx, slice_expr.lower) if slice_expr.lower is not None else None
- upper = build_expr(ctx, slice_expr.upper) if slice_expr.upper is not None else None
- step = build_expr(ctx, slice_expr.step) if slice_expr.step is not None else None
- return SliceExpr(base.range(), lower, upper, step)
- def build_Index(ctx, base, index_expr):
- if isinstance(index_expr.value, ast.Tuple):
- raise NotSupportedError(base.range(),
- "slicing multiple dimensions with "
- "tuples not supported yet")
- return build_expr(ctx, index_expr.value)
- def build_ExtSlice(ctx, base, extslice):
- sub_exprs = []
- for expr in extslice.dims:
- sub_type = type(expr)
- if sub_type is ast.Index:
- sub_exprs.append(build_Index(ctx, base, expr))
- elif sub_type is ast.Slice:
- sub_exprs.append(build_SliceExpr(ctx, base, expr))
- elif sub_type is ast.Ellipsis:
- sub_exprs.append(Dots(base.range()))
- else:
- raise NotSupportedError(base.range(),
- "slicing multiple dimensions with "
- "{} not supported".format(sub_type))
- return sub_exprs
- base = build_expr(ctx, expr.value)
- sub_type = type(expr.slice)
- if sub_type is ast.Index:
- if isinstance(expr.slice.value, ast.Tuple):
- # N-dimensional indexing using Tuple: x[(i, j, k)] is equivalent to x[i, j, k]
- # XXX: Indexing using a list is **different**! It triggers advanced indexing.
- indices = [build_expr(ctx, index_expr) for index_expr in expr.slice.value.elts]
- if not indices:
- # `col_offset` is an int, but `end_col_offset` is
- # `Optional[int]`. The magic number is here to make
- # sure we can parse `()` on any machine
- r = ctx.make_range(expr.lineno,
- expr.slice.value.col_offset,
- expr.slice.value.col_offset + 2)
- tup = TupleLiteral(r, [])
- indices.append(tup)
- return Subscript(base, indices)
- else:
- return Subscript(base, [build_expr(ctx, expr.slice.value)])
- elif sub_type is ast.Slice:
- return Subscript(base, [build_SliceExpr(ctx, base, expr.slice)])
- elif sub_type is ast.ExtSlice:
- return Subscript(base, build_ExtSlice(ctx, base, expr.slice))
- elif sys.version_info >= (3, 9): # In Python3.9 array indicies are not wrapped in ast.Index
- if sub_type is ast.Tuple:
- # N-dimensional indexing using Tuple: x[(i, j, k)] is equivalent to x[i, j, k]
- indices = []
- for index_expr in expr.slice.elts:
- if isinstance(index_expr, ast.Slice):
- indices.append(build_SliceExpr(ctx, base, index_expr))
- else:
- indices.append(build_expr(ctx, index_expr))
- # Special-case logic for `typing.Tuple[()]`
- if not indices:
- # See note above r.e. magic number
- r = ctx.make_range(expr.lineno,
- expr.slice.col_offset,
- expr.slice.col_offset + 2)
- tup = TupleLiteral(r, [])
- indices.append(tup)
- return Subscript(base, indices)
- return Subscript(base, [build_expr(ctx, expr.slice)])
- else: # Ellipsis (can only happen in Python 2)
- raise NotSupportedError(base.range(), "ellipsis is not supported")
- @staticmethod
- def build_List(ctx, expr):
- return ListLiteral(ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1),
- [build_expr(ctx, e) for e in expr.elts])
- @staticmethod
- def build_Tuple(ctx, expr):
- return TupleLiteral(ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1),
- [build_expr(ctx, e) for e in expr.elts])
- @staticmethod
- def build_Dict(ctx, expr):
- range = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
- if expr.keys and not expr.keys[0]:
- raise NotSupportedError(range, "Dict expansion (e.g. `{**dict}`) is not supported")
- return DictLiteral(range, [build_expr(ctx, e) for e in expr.keys],
- [build_expr(ctx, e) for e in expr.values])
- @staticmethod
- def build_Num(ctx, expr):
- value = str(expr.n)
- r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(value))
- return Const(r, value)
- @staticmethod
- def build_Constant(ctx, expr):
- value = expr.value
- if value is None or isinstance(value, bool):
- # NB: this check has to happen before the int check because bool is
- # a subclass of int
- return ExprBuilder.build_NameConstant(ctx, expr)
- if isinstance(value, (int, float, complex)):
- return ExprBuilder.build_Num(ctx, expr)
- elif isinstance(value, str):
- return ExprBuilder.build_Str(ctx, expr)
- elif isinstance(value, type(Ellipsis)):
- return ExprBuilder.build_Ellipsis(ctx, expr)
- else:
- error_range = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(str(value)))
- raise FrontendError(error_range, "Unknown Constant expression type")
- @staticmethod
- def build_Str(ctx, expr):
- value = str(expr.s)
- r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + len(value) + 1)
- return StringLiteral(r, value)
- @staticmethod
- def build_JoinedStr(ctx, expr):
- s = ''
- args = []
- for value in expr.values:
- r = ctx.make_range(value.lineno, value.col_offset, value.col_offset + 1)
- if isinstance(value, ast.FormattedValue):
- if value.conversion != -1:
- raise NotSupportedError(r, 'Don\'t support conversion in JoinedStr')
- if value.format_spec is not None:
- raise NotSupportedError(r, 'Don\'t support formatting in JoinedStr')
- s += '{}'
- args.append(build_expr(ctx, value.value))
- elif isinstance(value, ast.Str):
- s += value.s
- else:
- raise NotSupportedError(r, 'Unsupported value in JoinedStr')
- r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
- return Apply(Select(StringLiteral(r, s), Ident(r, 'format')), args, [])
- @staticmethod
- def build_ListComp(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset)
- if (len(stmt.generators) != 1):
- raise NotSupportedError(r, "Only a single generator is currently supported")
- if (len(stmt.generators[0].ifs) != 0):
- raise NotSupportedError(r, "Comprehension ifs are not supported yet")
- elt_expr = build_expr(ctx, stmt.elt)
- target_expr = build_expr(ctx, stmt.generators[0].target)
- iter_expr = build_expr(ctx, stmt.generators[0].iter)
- return ListComp(r, elt_expr, target_expr, iter_expr)
- @staticmethod
- def build_GeneratorExp(ctx, stmt):
- # Convert Generator expression to ListComp
- return ExprBuilder.build_ListComp(ctx, stmt)
- @staticmethod
- def build_DictComp(ctx, stmt):
- r = ctx.make_range(stmt.lineno, stmt.col_offset, stmt.col_offset)
- if (len(stmt.generators) != 1):
- raise NotSupportedError(r, "Only a single generator is currently supported")
- if (len(stmt.generators[0].ifs) != 0):
- raise NotSupportedError(r, "Comprehension ifs are not supported yet")
- key_expr = build_expr(ctx, stmt.key)
- value_expr = build_expr(ctx, stmt.value)
- target_expr = build_expr(ctx, stmt.generators[0].target)
- iter_expr = build_expr(ctx, stmt.generators[0].iter)
- return DictComp(r, key_expr, value_expr, target_expr, iter_expr)
- @staticmethod
- def build_Starred(ctx, expr):
- r = ctx.make_range(expr.lineno, expr.col_offset, expr.col_offset + 1)
- return Starred(r, build_expr(ctx, expr.value))
- build_expr = ExprBuilder()
- build_stmt = StmtBuilder()
- build_withitem = WithItemBuilder()
- def find_before(ctx, pos, substr, offsets=(0, 0)):
- new_pos = ctx.source[:pos].rindex(substr)
- return ctx.make_raw_range(new_pos + offsets[0], new_pos + len(substr) + offsets[1])
|