1234567891011121314151617181920212223242526272829303132333435363738394041 |
- """
- Tools to help with tensor property propagation.
- This is not intended to be imported directly; please use the exposed
- functionalities in `torch.jit`.
- """
- from typing import Any, List
- import torch
- from torch import TensorType
- from torch._C import Graph
- def apply_input_props_using_example(graph: Graph, example_input: List[Any]):
- """
- Applies properties for each tensor in the graph inputs
- using the example supplied.
- """
- graph_inputs = list(graph.inputs())
- if len(graph_inputs) == 0:
- return
- # Strip self args off for methods
- in_0 = graph_inputs[0]
- if isinstance(in_0.type(), torch._C.ClassType) and in_0.debugName() == "self":
- graph_inputs = graph_inputs[1:]
- if not len(graph_inputs) == len(example_input):
- raise RuntimeError(
- "Number of inputs in graph does not match number of inputs in the example")
- for i, (graph_i, example_i) in enumerate(zip(graph_inputs, example_input)):
- if example_i is None:
- continue # Skip the type check
- if isinstance(example_i, torch.Tensor) != isinstance(graph_i.type(), TensorType):
- raise RuntimeError(f"Input {i} does not match type of example", graph_i, example_i)
- if isinstance(example_i, torch.Tensor):
- graph_i.setType(TensorType.create_from_tensor(example_i)) # type: ignore[arg-type]
|