123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713 |
- /*
- pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices
- Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
- All rights reserved. Use of this source code is governed by a
- BSD-style license that can be found in the LICENSE file.
- */
- #pragma once
- /* HINT: To suppress warnings originating from the Eigen headers, use -isystem.
- See also:
- https://stackoverflow.com/questions/2579576/i-dir-vs-isystem-dir
- https://stackoverflow.com/questions/1741816/isystem-for-ms-visual-studio-c-compiler
- */
- #include "numpy.h"
- // The C4127 suppression was introduced for Eigen 3.4.0. In theory we could
- // make it version specific, or even remove it later, but considering that
- // 1. C4127 is generally far more distracting than useful for modern template code, and
- // 2. we definitely want to ignore any MSVC warnings originating from Eigen code,
- // it is probably best to keep this around indefinitely.
- #if defined(_MSC_VER)
- # pragma warning(push)
- # pragma warning(disable : 4127) // C4127: conditional expression is constant
- # pragma warning(disable : 5054) // https://github.com/pybind/pybind11/pull/3741
- // C5054: operator '&': deprecated between enumerations of different types
- #elif defined(__MINGW32__)
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
- #endif
- #include <Eigen/Core>
- #include <Eigen/SparseCore>
- #if defined(_MSC_VER)
- # pragma warning(pop)
- #elif defined(__MINGW32__)
- # pragma GCC diagnostic pop
- #endif
- // Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
- // move constructors that break things. We could detect this an explicitly copy, but an extra copy
- // of matrices seems highly undesirable.
- static_assert(EIGEN_VERSION_AT_LEAST(3, 2, 7),
- "Eigen support in pybind11 requires Eigen >= 3.2.7");
- PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
- // Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
- using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
- template <typename MatrixType>
- using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
- template <typename MatrixType>
- using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
- PYBIND11_NAMESPACE_BEGIN(detail)
- #if EIGEN_VERSION_AT_LEAST(3, 3, 0)
- using EigenIndex = Eigen::Index;
- template <typename Scalar, int Flags, typename StorageIndex>
- using EigenMapSparseMatrix = Eigen::Map<Eigen::SparseMatrix<Scalar, Flags, StorageIndex>>;
- #else
- using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
- template <typename Scalar, int Flags, typename StorageIndex>
- using EigenMapSparseMatrix = Eigen::MappedSparseMatrix<Scalar, Flags, StorageIndex>;
- #endif
- // Matches Eigen::Map, Eigen::Ref, blocks, etc:
- template <typename T>
- using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>,
- std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
- template <typename T>
- using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
- template <typename T>
- using is_eigen_dense_plain
- = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
- template <typename T>
- using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
- // Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
- // basically covers anything that can be assigned to a dense matrix but that don't have a typical
- // matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
- // SelfAdjointView fall into this category.
- template <typename T>
- using is_eigen_other
- = all_of<is_template_base_of<Eigen::EigenBase, T>,
- negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>>;
- // Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
- template <bool EigenRowMajor>
- struct EigenConformable {
- bool conformable = false;
- EigenIndex rows = 0, cols = 0;
- EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
- bool negativestrides = false; // If true, do not use stride!
- // NOLINTNEXTLINE(google-explicit-constructor)
- EigenConformable(bool fits = false) : conformable{fits} {}
- // Matrix type:
- EigenConformable(EigenIndex r, EigenIndex c, EigenIndex rstride, EigenIndex cstride)
- : conformable{true}, rows{r}, cols{c},
- // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity.
- // http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
- stride{EigenRowMajor ? (rstride > 0 ? rstride : 0)
- : (cstride > 0 ? cstride : 0) /* outer stride */,
- EigenRowMajor ? (cstride > 0 ? cstride : 0)
- : (rstride > 0 ? rstride : 0) /* inner stride */},
- negativestrides{rstride < 0 || cstride < 0} {}
- // Vector type:
- EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
- : EigenConformable(r, c, r == 1 ? c * stride : stride, c == 1 ? r : r * stride) {}
- template <typename props>
- bool stride_compatible() const {
- // To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
- // matching strides, or a dimension size of 1 (in which case the stride value is
- // irrelevant). Alternatively, if any dimension size is 0, the strides are not relevant
- // (and numpy ≥ 1.23 sets the strides to 0 in that case, so we need to check explicitly).
- if (negativestrides) {
- return false;
- }
- if (rows == 0 || cols == 0) {
- return true;
- }
- return (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner()
- || (EigenRowMajor ? cols : rows) == 1)
- && (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer()
- || (EigenRowMajor ? rows : cols) == 1);
- }
- // NOLINTNEXTLINE(google-explicit-constructor)
- operator bool() const { return conformable; }
- };
- template <typename Type>
- struct eigen_extract_stride {
- using type = Type;
- };
- template <typename PlainObjectType, int MapOptions, typename StrideType>
- struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> {
- using type = StrideType;
- };
- template <typename PlainObjectType, int Options, typename StrideType>
- struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> {
- using type = StrideType;
- };
- // Helper struct for extracting information from an Eigen type
- template <typename Type_>
- struct EigenProps {
- using Type = Type_;
- using Scalar = typename Type::Scalar;
- using StrideType = typename eigen_extract_stride<Type>::type;
- static constexpr EigenIndex rows = Type::RowsAtCompileTime, cols = Type::ColsAtCompileTime,
- size = Type::SizeAtCompileTime;
- static constexpr bool row_major = Type::IsRowMajor,
- vector
- = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
- fixed_rows = rows != Eigen::Dynamic, fixed_cols = cols != Eigen::Dynamic,
- fixed = size != Eigen::Dynamic, // Fully-fixed size
- dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
- template <EigenIndex i, EigenIndex ifzero>
- using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
- static constexpr EigenIndex inner_stride
- = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
- outer_stride = if_zero < StrideType::OuterStrideAtCompileTime,
- vector ? size
- : row_major ? cols
- : rows > ::value;
- static constexpr bool dynamic_stride
- = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
- static constexpr bool requires_row_major
- = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
- static constexpr bool requires_col_major
- = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
- // Takes an input array and determines whether we can make it fit into the Eigen type. If
- // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
- // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
- static EigenConformable<row_major> conformable(const array &a) {
- const auto dims = a.ndim();
- if (dims < 1 || dims > 2) {
- return false;
- }
- if (dims == 2) { // Matrix type: require exact match (or dynamic)
- EigenIndex np_rows = a.shape(0), np_cols = a.shape(1),
- np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
- np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
- if ((PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && np_rows != rows)
- || (PYBIND11_SILENCE_MSVC_C4127(fixed_cols) && np_cols != cols)) {
- return false;
- }
- return {np_rows, np_cols, np_rstride, np_cstride};
- }
- // Otherwise we're storing an n-vector. Only one of the strides will be used, but
- // whichever is used, we want the (single) numpy stride value.
- const EigenIndex n = a.shape(0),
- stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
- if (vector) { // Eigen type is a compile-time vector
- if (PYBIND11_SILENCE_MSVC_C4127(fixed) && size != n) {
- return false; // Vector size mismatch
- }
- return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
- }
- if (fixed) {
- // The type has a fixed size, but is not a vector: abort
- return false;
- }
- if (fixed_cols) {
- // Since this isn't a vector, cols must be != 1. We allow this only if it exactly
- // equals the number of elements (rows is Dynamic, and so 1 row is allowed).
- if (cols != n) {
- return false;
- }
- return {1, n, stride};
- } // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
- if (PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && rows != n) {
- return false;
- }
- return {n, 1, stride};
- }
- static constexpr bool show_writeable
- = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
- static constexpr bool show_order = is_eigen_dense_map<Type>::value;
- static constexpr bool show_c_contiguous = show_order && requires_row_major;
- static constexpr bool show_f_contiguous
- = !show_c_contiguous && show_order && requires_col_major;
- static constexpr auto descriptor
- = const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[")
- + const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ")
- + const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]")
- +
- // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to
- // be satisfied: writeable=True (for a mutable reference), and, depending on the map's
- // stride options, possibly f_contiguous or c_contiguous. We include them in the
- // descriptor output to provide some hint as to why a TypeError is occurring (otherwise
- // it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and
- // an error message that you *gave* a numpy.ndarray of the right type and dimensions.
- const_name<show_writeable>(", flags.writeable", "")
- + const_name<show_c_contiguous>(", flags.c_contiguous", "")
- + const_name<show_f_contiguous>(", flags.f_contiguous", "") + const_name("]");
- };
- // Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
- // otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
- template <typename props>
- handle
- eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
- constexpr ssize_t elem_size = sizeof(typename props::Scalar);
- array a;
- if (props::vector) {
- a = array({src.size()}, {elem_size * src.innerStride()}, src.data(), base);
- } else {
- a = array({src.rows(), src.cols()},
- {elem_size * src.rowStride(), elem_size * src.colStride()},
- src.data(),
- base);
- }
- if (!writeable) {
- array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
- }
- return a.release();
- }
- // Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
- // reference the Eigen object's data with `base` as the python-registered base class (if omitted,
- // the base will be set to None, and lifetime management is up to the caller). The numpy array is
- // non-writeable if the given type is const.
- template <typename props, typename Type>
- handle eigen_ref_array(Type &src, handle parent = none()) {
- // none here is to get past array's should-we-copy detection, which currently always
- // copies when there is no base. Setting the base to None should be harmless.
- return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
- }
- // Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a
- // numpy array that references the encapsulated data with a python-side reference to the capsule to
- // tie its destruction to that of any dependent python objects. Const-ness is determined by
- // whether or not the Type of the pointer given is const.
- template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
- handle eigen_encapsulate(Type *src) {
- capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
- return eigen_ref_array<props>(*src, base);
- }
- // Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
- // types.
- template <typename Type>
- struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
- using Scalar = typename Type::Scalar;
- using props = EigenProps<Type>;
- bool load(handle src, bool convert) {
- // If we're in no-convert mode, only load if given an array of the correct type
- if (!convert && !isinstance<array_t<Scalar>>(src)) {
- return false;
- }
- // Coerce into an array, but don't do type conversion yet; the copy below handles it.
- auto buf = array::ensure(src);
- if (!buf) {
- return false;
- }
- auto dims = buf.ndim();
- if (dims < 1 || dims > 2) {
- return false;
- }
- auto fits = props::conformable(buf);
- if (!fits) {
- return false;
- }
- // Allocate the new type, then build a numpy reference into it
- value = Type(fits.rows, fits.cols);
- auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
- if (dims == 1) {
- ref = ref.squeeze();
- } else if (ref.ndim() == 1) {
- buf = buf.squeeze();
- }
- int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
- if (result < 0) { // Copy failed!
- PyErr_Clear();
- return false;
- }
- return true;
- }
- private:
- // Cast implementation
- template <typename CType>
- static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
- switch (policy) {
- case return_value_policy::take_ownership:
- case return_value_policy::automatic:
- return eigen_encapsulate<props>(src);
- case return_value_policy::move:
- return eigen_encapsulate<props>(new CType(std::move(*src)));
- case return_value_policy::copy:
- return eigen_array_cast<props>(*src);
- case return_value_policy::reference:
- case return_value_policy::automatic_reference:
- return eigen_ref_array<props>(*src);
- case return_value_policy::reference_internal:
- return eigen_ref_array<props>(*src, parent);
- default:
- throw cast_error("unhandled return_value_policy: should not happen!");
- };
- }
- public:
- // Normal returned non-reference, non-const value:
- static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
- return cast_impl(&src, return_value_policy::move, parent);
- }
- // If you return a non-reference const, we mark the numpy array readonly:
- static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
- return cast_impl(&src, return_value_policy::move, parent);
- }
- // lvalue reference return; default (automatic) becomes copy
- static handle cast(Type &src, return_value_policy policy, handle parent) {
- if (policy == return_value_policy::automatic
- || policy == return_value_policy::automatic_reference) {
- policy = return_value_policy::copy;
- }
- return cast_impl(&src, policy, parent);
- }
- // const lvalue reference return; default (automatic) becomes copy
- static handle cast(const Type &src, return_value_policy policy, handle parent) {
- if (policy == return_value_policy::automatic
- || policy == return_value_policy::automatic_reference) {
- policy = return_value_policy::copy;
- }
- return cast(&src, policy, parent);
- }
- // non-const pointer return
- static handle cast(Type *src, return_value_policy policy, handle parent) {
- return cast_impl(src, policy, parent);
- }
- // const pointer return
- static handle cast(const Type *src, return_value_policy policy, handle parent) {
- return cast_impl(src, policy, parent);
- }
- static constexpr auto name = props::descriptor;
- // NOLINTNEXTLINE(google-explicit-constructor)
- operator Type *() { return &value; }
- // NOLINTNEXTLINE(google-explicit-constructor)
- operator Type &() { return value; }
- // NOLINTNEXTLINE(google-explicit-constructor)
- operator Type &&() && { return std::move(value); }
- template <typename T>
- using cast_op_type = movable_cast_op_type<T>;
- private:
- Type value;
- };
- // Base class for casting reference/map/block/etc. objects back to python.
- template <typename MapType>
- struct eigen_map_caster {
- private:
- using props = EigenProps<MapType>;
- public:
- // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
- // to stay around), but we'll allow it under the assumption that you know what you're doing
- // (and have an appropriate keep_alive in place). We return a numpy array pointing directly at
- // the ref's data (The numpy array ends up read-only if the ref was to a const matrix type.)
- // Note that this means you need to ensure you don't destroy the object in some other way (e.g.
- // with an appropriate keep_alive, or with a reference to a statically allocated matrix).
- static handle cast(const MapType &src, return_value_policy policy, handle parent) {
- switch (policy) {
- case return_value_policy::copy:
- return eigen_array_cast<props>(src);
- case return_value_policy::reference_internal:
- return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
- case return_value_policy::reference:
- case return_value_policy::automatic:
- case return_value_policy::automatic_reference:
- return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
- default:
- // move, take_ownership don't make any sense for a ref/map:
- pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
- }
- }
- static constexpr auto name = props::descriptor;
- // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
- // types but not bound arguments). We still provide them (with an explicitly delete) so that
- // you end up here if you try anyway.
- bool load(handle, bool) = delete;
- operator MapType() = delete;
- template <typename>
- using cast_op_type = MapType;
- };
- // We can return any map-like object (but can only load Refs, specialized next):
- template <typename Type>
- struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> : eigen_map_caster<Type> {};
- // Loader for Ref<...> arguments. See the documentation for info on how to make this work without
- // copying (it requires some extra effort in many cases).
- template <typename PlainObjectType, typename StrideType>
- struct type_caster<
- Eigen::Ref<PlainObjectType, 0, StrideType>,
- enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>>
- : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
- private:
- using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
- using props = EigenProps<Type>;
- using Scalar = typename props::Scalar;
- using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
- using Array
- = array_t<Scalar,
- array::forcecast
- | ((props::row_major ? props::inner_stride : props::outer_stride) == 1
- ? array::c_style
- : (props::row_major ? props::outer_stride : props::inner_stride) == 1
- ? array::f_style
- : 0)>;
- static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
- // Delay construction (these have no default constructor)
- std::unique_ptr<MapType> map;
- std::unique_ptr<Type> ref;
- // Our array. When possible, this is just a numpy array pointing to the source data, but
- // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an
- // incompatible layout, or is an array of a type that needs to be converted). Using a numpy
- // temporary (rather than an Eigen temporary) saves an extra copy when we need both type
- // conversion and storage order conversion. (Note that we refuse to use this temporary copy
- // when loading an argument for a Ref<M> with M non-const, i.e. a read-write reference).
- Array copy_or_ref;
- public:
- bool load(handle src, bool convert) {
- // First check whether what we have is already an array of the right type. If not, we
- // can't avoid a copy (because the copy is also going to do type conversion).
- bool need_copy = !isinstance<Array>(src);
- EigenConformable<props::row_major> fits;
- if (!need_copy) {
- // We don't need a converting copy, but we also need to check whether the strides are
- // compatible with the Ref's stride requirements
- auto aref = reinterpret_borrow<Array>(src);
- if (aref && (!need_writeable || aref.writeable())) {
- fits = props::conformable(aref);
- if (!fits) {
- return false; // Incompatible dimensions
- }
- if (!fits.template stride_compatible<props>()) {
- need_copy = true;
- } else {
- copy_or_ref = std::move(aref);
- }
- } else {
- need_copy = true;
- }
- }
- if (need_copy) {
- // We need to copy: If we need a mutable reference, or we're not supposed to convert
- // (either because we're in the no-convert overload pass, or because we're explicitly
- // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
- if (!convert || need_writeable) {
- return false;
- }
- Array copy = Array::ensure(src);
- if (!copy) {
- return false;
- }
- fits = props::conformable(copy);
- if (!fits || !fits.template stride_compatible<props>()) {
- return false;
- }
- copy_or_ref = std::move(copy);
- loader_life_support::add_patient(copy_or_ref);
- }
- ref.reset();
- map.reset(new MapType(data(copy_or_ref),
- fits.rows,
- fits.cols,
- make_stride(fits.stride.outer(), fits.stride.inner())));
- ref.reset(new Type(*map));
- return true;
- }
- // NOLINTNEXTLINE(google-explicit-constructor)
- operator Type *() { return ref.get(); }
- // NOLINTNEXTLINE(google-explicit-constructor)
- operator Type &() { return *ref; }
- template <typename _T>
- using cast_op_type = pybind11::detail::cast_op_type<_T>;
- private:
- template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
- Scalar *data(Array &a) {
- return a.mutable_data();
- }
- template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
- const Scalar *data(Array &a) {
- return a.data();
- }
- // Attempt to figure out a constructor of `Stride` that will work.
- // If both strides are fixed, use a default constructor:
- template <typename S>
- using stride_ctor_default = bool_constant<S::InnerStrideAtCompileTime != Eigen::Dynamic
- && S::OuterStrideAtCompileTime != Eigen::Dynamic
- && std::is_default_constructible<S>::value>;
- // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
- // Eigen::Stride, and use it:
- template <typename S>
- using stride_ctor_dual
- = bool_constant<!stride_ctor_default<S>::value
- && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
- // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
- // it (passing whichever stride is dynamic).
- template <typename S>
- using stride_ctor_outer
- = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
- && S::OuterStrideAtCompileTime == Eigen::Dynamic
- && S::InnerStrideAtCompileTime != Eigen::Dynamic
- && std::is_constructible<S, EigenIndex>::value>;
- template <typename S>
- using stride_ctor_inner
- = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
- && S::InnerStrideAtCompileTime == Eigen::Dynamic
- && S::OuterStrideAtCompileTime != Eigen::Dynamic
- && std::is_constructible<S, EigenIndex>::value>;
- template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
- static S make_stride(EigenIndex, EigenIndex) {
- return S();
- }
- template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
- static S make_stride(EigenIndex outer, EigenIndex inner) {
- return S(outer, inner);
- }
- template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
- static S make_stride(EigenIndex outer, EigenIndex) {
- return S(outer);
- }
- template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
- static S make_stride(EigenIndex, EigenIndex inner) {
- return S(inner);
- }
- };
- // type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
- // EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
- // load() is not supported, but we can cast them into the python domain by first copying to a
- // regular Eigen::Matrix, then casting that.
- template <typename Type>
- struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
- protected:
- using Matrix
- = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
- using props = EigenProps<Matrix>;
- public:
- static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
- handle h = eigen_encapsulate<props>(new Matrix(src));
- return h;
- }
- static handle cast(const Type *src, return_value_policy policy, handle parent) {
- return cast(*src, policy, parent);
- }
- static constexpr auto name = props::descriptor;
- // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
- // types but not bound arguments). We still provide them (with an explicitly delete) so that
- // you end up here if you try anyway.
- bool load(handle, bool) = delete;
- operator Type() = delete;
- template <typename>
- using cast_op_type = Type;
- };
- template <typename Type>
- struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
- using Scalar = typename Type::Scalar;
- using StorageIndex = remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())>;
- using Index = typename Type::Index;
- static constexpr bool rowMajor = Type::IsRowMajor;
- bool load(handle src, bool) {
- if (!src) {
- return false;
- }
- auto obj = reinterpret_borrow<object>(src);
- object sparse_module = module_::import("scipy.sparse");
- object matrix_type = sparse_module.attr(rowMajor ? "csr_matrix" : "csc_matrix");
- if (!type::handle_of(obj).is(matrix_type)) {
- try {
- obj = matrix_type(obj);
- } catch (const error_already_set &) {
- return false;
- }
- }
- auto values = array_t<Scalar>((object) obj.attr("data"));
- auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
- auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
- auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
- auto nnz = obj.attr("nnz").cast<Index>();
- if (!values || !innerIndices || !outerIndices) {
- return false;
- }
- value = EigenMapSparseMatrix<Scalar,
- Type::Flags &(Eigen::RowMajor | Eigen::ColMajor),
- StorageIndex>(shape[0].cast<Index>(),
- shape[1].cast<Index>(),
- std::move(nnz),
- outerIndices.mutable_data(),
- innerIndices.mutable_data(),
- values.mutable_data());
- return true;
- }
- static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
- const_cast<Type &>(src).makeCompressed();
- object matrix_type
- = module_::import("scipy.sparse").attr(rowMajor ? "csr_matrix" : "csc_matrix");
- array data(src.nonZeros(), src.valuePtr());
- array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
- array innerIndices(src.nonZeros(), src.innerIndexPtr());
- return matrix_type(pybind11::make_tuple(
- std::move(data), std::move(innerIndices), std::move(outerIndices)),
- pybind11::make_tuple(src.rows(), src.cols()))
- .release();
- }
- PYBIND11_TYPE_CASTER(Type,
- const_name<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[",
- "scipy.sparse.csc_matrix[")
- + npy_format_descriptor<Scalar>::name + const_name("]"));
- };
- PYBIND11_NAMESPACE_END(detail)
- PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|