1234567891011121314151617181920212223242526272829303132333435 |
- #pragma once
- // @generated by torchgen/gen.py from Function.h
- #include <ATen/Context.h>
- #include <ATen/DeviceGuard.h>
- #include <ATen/TensorUtils.h>
- #include <ATen/TracerMode.h>
- #include <ATen/core/Generator.h>
- #include <ATen/core/Reduction.h>
- #include <ATen/core/Tensor.h>
- #include <c10/core/Scalar.h>
- #include <c10/core/Storage.h>
- #include <c10/core/TensorOptions.h>
- #include <c10/util/Deprecated.h>
- #include <c10/util/Optional.h>
- #include <ATen/ops/rnn_tanh_ops.h>
- namespace at {
- // aten::rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
- inline ::std::tuple<at::Tensor,at::Tensor> rnn_tanh(const at::Tensor & input, const at::Tensor & hx, at::TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
- return at::_ops::rnn_tanh_input::call(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first);
- }
- // aten::rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
- inline ::std::tuple<at::Tensor,at::Tensor> rnn_tanh(const at::Tensor & data, const at::Tensor & batch_sizes, const at::Tensor & hx, at::TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
- return at::_ops::rnn_tanh_data::call(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional);
- }
- }
|