mkldnn_rnn_layer.h 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. #pragma once
  2. // @generated by torchgen/gen.py from Function.h
  3. #include <ATen/Context.h>
  4. #include <ATen/DeviceGuard.h>
  5. #include <ATen/TensorUtils.h>
  6. #include <ATen/TracerMode.h>
  7. #include <ATen/core/Generator.h>
  8. #include <ATen/core/Reduction.h>
  9. #include <ATen/core/Tensor.h>
  10. #include <c10/core/Scalar.h>
  11. #include <c10/core/Storage.h>
  12. #include <c10/core/TensorOptions.h>
  13. #include <c10/util/Deprecated.h>
  14. #include <c10/util/Optional.h>
  15. #include <ATen/ops/mkldnn_rnn_layer_ops.h>
  16. namespace at {
  17. // aten::mkldnn_rnn_layer(Tensor input, Tensor weight0, Tensor weight1, Tensor weight2, Tensor weight3, Tensor hx_, Tensor cx_, bool reverse, int[] batch_sizes, int mode, int hidden_size, int num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train) -> (Tensor, Tensor, Tensor, Tensor)
  18. inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> mkldnn_rnn_layer(const at::Tensor & input, const at::Tensor & weight0, const at::Tensor & weight1, const at::Tensor & weight2, const at::Tensor & weight3, const at::Tensor & hx_, const at::Tensor & cx_, bool reverse, at::IntArrayRef batch_sizes, int64_t mode, int64_t hidden_size, int64_t num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train) {
  19. return at::_ops::mkldnn_rnn_layer::call(input, weight0, weight1, weight2, weight3, hx_, cx_, reverse, batch_sizes, mode, hidden_size, num_layers, has_biases, bidirectional, batch_first, train);
  20. }
  21. // aten::mkldnn_rnn_layer.out(Tensor input, Tensor weight0, Tensor weight1, Tensor weight2, Tensor weight3, Tensor hx_, Tensor cx_, bool reverse, int[] batch_sizes, int mode, int hidden_size, int num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))
  22. inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> mkldnn_rnn_layer_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, const at::Tensor & input, const at::Tensor & weight0, const at::Tensor & weight1, const at::Tensor & weight2, const at::Tensor & weight3, const at::Tensor & hx_, const at::Tensor & cx_, bool reverse, at::IntArrayRef batch_sizes, int64_t mode, int64_t hidden_size, int64_t num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train) {
  23. return at::_ops::mkldnn_rnn_layer_out::call(input, weight0, weight1, weight2, weight3, hx_, cx_, reverse, batch_sizes, mode, hidden_size, num_layers, has_biases, bidirectional, batch_first, train, out0, out1, out2, out3);
  24. }
  25. // aten::mkldnn_rnn_layer.out(Tensor input, Tensor weight0, Tensor weight1, Tensor weight2, Tensor weight3, Tensor hx_, Tensor cx_, bool reverse, int[] batch_sizes, int mode, int hidden_size, int num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))
  26. inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> mkldnn_rnn_layer_outf(const at::Tensor & input, const at::Tensor & weight0, const at::Tensor & weight1, const at::Tensor & weight2, const at::Tensor & weight3, const at::Tensor & hx_, const at::Tensor & cx_, bool reverse, at::IntArrayRef batch_sizes, int64_t mode, int64_t hidden_size, int64_t num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3) {
  27. return at::_ops::mkldnn_rnn_layer_out::call(input, weight0, weight1, weight2, weight3, hx_, cx_, reverse, batch_sizes, mode, hidden_size, num_layers, has_biases, bidirectional, batch_first, train, out0, out1, out2, out3);
  28. }
  29. }